Mostrar el registro sencillo del ítem
dc.contributor.author | Calatayud, Julia | es_ES |
dc.contributor.author | Cortés, J.-C. | es_ES |
dc.contributor.author | Jornet, Marc | es_ES |
dc.date.accessioned | 2021-02-06T04:32:36Z | |
dc.date.available | 2021-02-06T04:32:36Z | |
dc.date.issued | 2020-09-30 | es_ES |
dc.identifier.issn | 0170-4214 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160795 | |
dc.description.abstract | [EN] The time evolution of microorganisms, such as bacteria, is of great interest in biology. In the article by D. Stanescu et al. [Electronic Transactions on Numerical Analysis, 34, 44-58 (2009)], a logistic model was proposed to model the growth of anaerobic photosynthetic bacteria. In the laboratory experiment, actual data for two species of bacteria were considered:Rhodobacter capsulatusandChlorobium vibrioforme. In this paper, we suggest a new nonlinear model by assuming that the population growth rate is not proportional to the size of the bacteria population, but to the number of interactions between the microorganisms, and by taking into account the beginning of the death phase in the kinetic curve. Stanescu et al. evaluated the effect of randomness into the model coefficients by using generalized polynomial chaos (gPC) expansions, by setting arbitrary distributions without taking into account the likelihood of the data. By contrast, we utilize a Bayesian inverse approach for parameter estimation to obtain reliable posterior distributions for the random input coefficients in both the logistic and our new model. Since our new model does not possess an explicit solution, we use gPC expansions to construct the Bayesian model and to accelerate the Markov chain Monte Carlo algorithm for the Bayesian inference. | es_ES |
dc.description.sponsorship | This work has been supported by Spanish Ministerio de Economía y Competitividad grant MTM2017-89664-P. Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigación y Desarrollo (PAID), Universitat Politècnica de València. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Mathematical Methods in the Applied Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Bacterial growth model | es_ES |
dc.subject | Bayesian inverse problem | es_ES |
dc.subject | Generalized polynomial chaos | es_ES |
dc.subject | Nonlinear biological model | es_ES |
dc.subject | Population dynamics | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Improvement of random coefficient differential models of growth of anaerobic photosynthetic bacteria by combining Bayesian inference and gPC | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/mma.5546 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Calatayud, J.; Cortés, J.; Jornet, M. (2020). Improvement of random coefficient differential models of growth of anaerobic photosynthetic bacteria by combining Bayesian inference and gPC. Mathematical Methods in the Applied Sciences. 43(14):7885-7904. https://doi.org/10.1002/mma.5546 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/mma.5546 | es_ES |
dc.description.upvformatpinicio | 7885 | es_ES |
dc.description.upvformatpfin | 7904 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 43 | es_ES |
dc.description.issue | 14 | es_ES |
dc.relation.pasarela | S\377284 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Monod, J. (1949). THE GROWTH OF BACTERIAL CULTURES. Annual Review of Microbiology, 3(1), 371-394. doi:10.1146/annurev.mi.03.100149.002103 | es_ES |
dc.description.references | Novick, A. (1955). Growth of Bacteria. Annual Review of Microbiology, 9(1), 97-110. doi:10.1146/annurev.mi.09.100155.000525 | es_ES |
dc.description.references | Dutta, R. (2008). Fundamentals of Biochemical Engineering. doi:10.1007/978-3-540-77901-8 | es_ES |
dc.description.references | Hethcote, H. W. (2000). The Mathematics of Infectious Diseases. SIAM Review, 42(4), 599-653. doi:10.1137/s0036144500371907 | es_ES |
dc.description.references | Murray, J. D. (Ed.). (2002). Mathematical Biology. Interdisciplinary Applied Mathematics. doi:10.1007/b98868 | es_ES |
dc.description.references | Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & van ’t Riet, K. (1990). Modeling of the Bacterial Growth Curve. Applied and Environmental Microbiology, 56(6), 1875-1881. doi:10.1128/aem.56.6.1875-1881.1990 | es_ES |
dc.description.references | McKellar, R. C. (2001). Development of a dynamic continuous-discrete-continuous model describing the lag phase of individual bacterial cells. Journal of Applied Microbiology, 90(3), 407-413. doi:10.1046/j.1365-2672.2001.01258.x | es_ES |
dc.description.references | FUJIKAWA, H., KAI, A., & MOROZUMI, S. (2003). A New Logistic Model for Bacterial Growth. Journal of the Food Hygienic Society of Japan (Shokuhin Eiseigaku Zasshi), 44(3), 155-160. doi:10.3358/shokueishi.44.155 | es_ES |
dc.description.references | Juška, A., Gedminienė, G., & Ivanec, R. (2006). Growth of microbial populations. Mathematical modeling, laboratory exercises, and model-based data analysis. Biochemistry and Molecular Biology Education, 34(6), 417-422. doi:10.1002/bmb.2006.494034062669 | es_ES |
dc.description.references | Strand, J. . (1970). Random ordinary differential equations. Journal of Differential Equations, 7(3), 538-553. doi:10.1016/0022-0396(70)90100-2 | es_ES |
dc.description.references | Øksendal, B. (2003). Stochastic Differential Equations. Universitext. doi:10.1007/978-3-642-14394-6 | es_ES |
dc.description.references | Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160-173. doi:10.1016/j.cnsns.2015.09.009 | es_ES |
dc.description.references | Dorini, F. A., & Cunha, M. C. C. (2008). Statistical moments of the random linear transport equation. Journal of Computational Physics, 227(19), 8541-8550. doi:10.1016/j.jcp.2008.06.002 | es_ES |
dc.description.references | Casabán, M.-C., Cortés, J.-C., Romero, J.-V., & Roselló, M.-D. (2015). Probabilistic solution of random SI-type epidemiological models using the Random Variable Transformation technique. Communications in Nonlinear Science and Numerical Simulation, 24(1-3), 86-97. doi:10.1016/j.cnsns.2014.12.016 | es_ES |
dc.description.references | Calatayud, J., Cortés, J.-C., & Jornet, M. (2018). The damped pendulum random differential equation: A comprehensive stochastic analysis via the computation of the probability density function. Physica A: Statistical Mechanics and its Applications, 512, 261-279. doi:10.1016/j.physa.2018.08.024 | es_ES |
dc.description.references | Calatayud, J., Cortés, J. C., & Jornet, M. (2018). Uncertainty quantification for random parabolic equations with nonhomogeneous boundary conditions on a bounded domain via the approximation of the probability density function. Mathematical Methods in the Applied Sciences, 42(17), 5649-5667. doi:10.1002/mma.5333 | es_ES |
dc.description.references | Xiu, D. (2010). Numerical Methods for Stochastic Computations. doi:10.2307/j.ctv7h0skv | es_ES |
dc.description.references | Chen-Charpentier, B.-M., Cortés, J.-C., Licea, J.-A., Romero, J.-V., Roselló, M.-D., Santonja, F.-J., & Villanueva, R.-J. (2015). Constructing adaptive generalized polynomial chaos method to measure the uncertainty in continuous models: A computational approach. Mathematics and Computers in Simulation, 109, 113-129. doi:10.1016/j.matcom.2014.09.002 | es_ES |
dc.description.references | Cortés, J.-C., Romero, J.-V., Roselló, M.-D., & Villanueva, R.-J. (2017). Improving adaptive generalized polynomial chaos method to solve nonlinear random differential equations by the random variable transformation technique. Communications in Nonlinear Science and Numerical Simulation, 50, 1-15. doi:10.1016/j.cnsns.2017.02.011 | es_ES |
dc.description.references | Stanescu, D., & Chen-Charpentier, B. M. (2009). Random coefficient differential equation models for bacterial growth. Mathematical and Computer Modelling, 50(5-6), 885-895. doi:10.1016/j.mcm.2009.05.017 | es_ES |
dc.description.references | Calatayud, J., Cortés, J. C., Jornet, M., & Villanueva, R. J. (2018). Computational uncertainty quantification for random time-discrete epidemiological models using adaptive gPC. Mathematical Methods in the Applied Sciences, 41(18), 9618-9627. doi:10.1002/mma.5315 | es_ES |
dc.description.references | Calatayud, J., Cortés, J.-C., & Jornet, M. (2018). On the convergence of adaptive gPC for non-linear random difference equations: Theoretical analysis and some practical recommendations. Journal of Nonlinear Sciences and Applications, 11(09), 1077-1084. doi:10.22436/jnsa.011.09.06 | es_ES |
dc.description.references | Lesaffre, E., & Lawson, A. B. (2012). Bayesian Biostatistics. doi:10.1002/9781119942412 | es_ES |
dc.description.references | Mohammad-Djafari, A. (2002). Bayesian inference for inverse problems. AIP Conference Proceedings. doi:10.1063/1.1477067 | es_ES |
dc.description.references | Corberán-Vallet, A., Santonja, F. J., Jornet-Sanz, M., & Villanueva, R.-J. (2018). Modeling Chickenpox Dynamics with a Discrete Time Bayesian Stochastic Compartmental Model. Complexity, 2018, 1-9. doi:10.1155/2018/3060368 | es_ES |
dc.description.references | Marzouk, Y. M., Najm, H. N., & Rahn, L. A. (2007). Stochastic spectral methods for efficient Bayesian solution of inverse problems. Journal of Computational Physics, 224(2), 560-586. doi:10.1016/j.jcp.2006.10.010 | es_ES |
dc.description.references | Marzouk, Y., & Xiu, D. (2009). A Stochastic Collocation Approach to Bayesian Inference in Inverse Problems. Communications in Computational Physics, 6(4), 826-847. doi:10.4208/cicp.2009.v6.p826 | es_ES |
dc.description.references | Turchin, P. (2001). Does population ecology have general laws? Oikos, 94(1), 17-26. doi:10.1034/j.1600-0706.2001.11310.x | es_ES |
dc.description.references | RoosAM.Modeling Population Dynamics Netherlands: Notes from the University of Amsterdam;2014. | es_ES |
dc.description.references | Casella, G. (1985). An Introduction to Empirical Bayes Data Analysis. The American Statistician, 39(2), 83. doi:10.2307/2682801 | es_ES |
dc.description.references | Lunn, D. J., Thomas, A., Best, N., & Spiegelhalter, D. (2000). Statistics and Computing, 10(4), 325-337. doi:10.1023/a:1008929526011 | es_ES |
dc.description.references | Depaoli, S., Clifton, J. P., & Cobb, P. R. (2016). Just Another Gibbs Sampler (JAGS). Journal of Educational and Behavioral Statistics, 41(6), 628-649. doi:10.3102/1076998616664876 | es_ES |
dc.description.references | Johnson, T. R., & Kuhn, K. M. (2013). Bayesian Thurstonian models for ranking data using JAGS. Behavior Research Methods, 45(3), 857-872. doi:10.3758/s13428-012-0300-3 | es_ES |
dc.description.references | StokesM ChenF GunesF.An introduction to Bayesian analysis with SAS/STATR software Proceedings of the SAS Global Forum 2014 Conference SAS Institute Inc Cary USA(available athttps://support.sas.com/resources/papers/proceedings14/SAS400‐2014.pdf). Citeseer; 2014. | es_ES |
dc.description.references | Giraud, L., Langou, J., & Rozloznik, M. (2005). The loss of orthogonality in the Gram-Schmidt orthogonalization process. Computers & Mathematics with Applications, 50(7), 1069-1075. doi:10.1016/j.camwa.2005.08.009 | es_ES |
dc.description.references | Ernst, O. G., Mugler, A., Starkloff, H.-J., & Ullmann, E. (2011). On the convergence of generalized polynomial chaos expansions. ESAIM: Mathematical Modelling and Numerical Analysis, 46(2), 317-339. doi:10.1051/m2an/2011045 | es_ES |
dc.description.references | Shi, W., & Zhang, C. (2012). Error analysis of generalized polynomial chaos for nonlinear random ordinary differential equations. Applied Numerical Mathematics, 62(12), 1954-1964. doi:10.1016/j.apnum.2012.08.007 | es_ES |
dc.description.references | Pukelsheim, F. (1994). The Three Sigma Rule. The American Statistician, 48(2), 88. doi:10.2307/2684253 | es_ES |