- -

Improvement of random coefficient differential models of growth of anaerobic photosynthetic bacteria by combining Bayesian inference and gPC

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improvement of random coefficient differential models of growth of anaerobic photosynthetic bacteria by combining Bayesian inference and gPC

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Calatayud, Julia es_ES
dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author Jornet, Marc es_ES
dc.date.accessioned 2021-02-06T04:32:36Z
dc.date.available 2021-02-06T04:32:36Z
dc.date.issued 2020-09-30 es_ES
dc.identifier.issn 0170-4214 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160795
dc.description.abstract [EN] The time evolution of microorganisms, such as bacteria, is of great interest in biology. In the article by D. Stanescu et al. [Electronic Transactions on Numerical Analysis, 34, 44-58 (2009)], a logistic model was proposed to model the growth of anaerobic photosynthetic bacteria. In the laboratory experiment, actual data for two species of bacteria were considered:Rhodobacter capsulatusandChlorobium vibrioforme. In this paper, we suggest a new nonlinear model by assuming that the population growth rate is not proportional to the size of the bacteria population, but to the number of interactions between the microorganisms, and by taking into account the beginning of the death phase in the kinetic curve. Stanescu et al. evaluated the effect of randomness into the model coefficients by using generalized polynomial chaos (gPC) expansions, by setting arbitrary distributions without taking into account the likelihood of the data. By contrast, we utilize a Bayesian inverse approach for parameter estimation to obtain reliable posterior distributions for the random input coefficients in both the logistic and our new model. Since our new model does not possess an explicit solution, we use gPC expansions to construct the Bayesian model and to accelerate the Markov chain Monte Carlo algorithm for the Bayesian inference. es_ES
dc.description.sponsorship This work has been supported by Spanish Ministerio de Economía y Competitividad grant MTM2017-89664-P. Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigación y Desarrollo (PAID), Universitat Politècnica de València. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Mathematical Methods in the Applied Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bacterial growth model es_ES
dc.subject Bayesian inverse problem es_ES
dc.subject Generalized polynomial chaos es_ES
dc.subject Nonlinear biological model es_ES
dc.subject Population dynamics es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Improvement of random coefficient differential models of growth of anaerobic photosynthetic bacteria by combining Bayesian inference and gPC es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/mma.5546 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Calatayud, J.; Cortés, J.; Jornet, M. (2020). Improvement of random coefficient differential models of growth of anaerobic photosynthetic bacteria by combining Bayesian inference and gPC. Mathematical Methods in the Applied Sciences. 43(14):7885-7904. https://doi.org/10.1002/mma.5546 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/mma.5546 es_ES
dc.description.upvformatpinicio 7885 es_ES
dc.description.upvformatpfin 7904 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 14 es_ES
dc.relation.pasarela S\377284 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Monod, J. (1949). THE GROWTH OF BACTERIAL CULTURES. Annual Review of Microbiology, 3(1), 371-394. doi:10.1146/annurev.mi.03.100149.002103 es_ES
dc.description.references Novick, A. (1955). Growth of Bacteria. Annual Review of Microbiology, 9(1), 97-110. doi:10.1146/annurev.mi.09.100155.000525 es_ES
dc.description.references Dutta, R. (2008). Fundamentals of Biochemical Engineering. doi:10.1007/978-3-540-77901-8 es_ES
dc.description.references Hethcote, H. W. (2000). The Mathematics of Infectious Diseases. SIAM Review, 42(4), 599-653. doi:10.1137/s0036144500371907 es_ES
dc.description.references Murray, J. D. (Ed.). (2002). Mathematical Biology. Interdisciplinary Applied Mathematics. doi:10.1007/b98868 es_ES
dc.description.references Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & van ’t Riet, K. (1990). Modeling of the Bacterial Growth Curve. Applied and Environmental Microbiology, 56(6), 1875-1881. doi:10.1128/aem.56.6.1875-1881.1990 es_ES
dc.description.references McKellar, R. C. (2001). Development of a dynamic continuous-discrete-continuous model describing the lag phase of individual bacterial cells. Journal of Applied Microbiology, 90(3), 407-413. doi:10.1046/j.1365-2672.2001.01258.x es_ES
dc.description.references FUJIKAWA, H., KAI, A., & MOROZUMI, S. (2003). A New Logistic Model for Bacterial Growth. Journal of the Food Hygienic Society of Japan (Shokuhin Eiseigaku Zasshi), 44(3), 155-160. doi:10.3358/shokueishi.44.155 es_ES
dc.description.references Juška, A., Gedminienė, G., & Ivanec, R. (2006). Growth of microbial populations. Mathematical modeling, laboratory exercises, and model-based data analysis. Biochemistry and Molecular Biology Education, 34(6), 417-422. doi:10.1002/bmb.2006.494034062669 es_ES
dc.description.references Strand, J. . (1970). Random ordinary differential equations. Journal of Differential Equations, 7(3), 538-553. doi:10.1016/0022-0396(70)90100-2 es_ES
dc.description.references Øksendal, B. (2003). Stochastic Differential Equations. Universitext. doi:10.1007/978-3-642-14394-6 es_ES
dc.description.references Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160-173. doi:10.1016/j.cnsns.2015.09.009 es_ES
dc.description.references Dorini, F. A., & Cunha, M. C. C. (2008). Statistical moments of the random linear transport equation. Journal of Computational Physics, 227(19), 8541-8550. doi:10.1016/j.jcp.2008.06.002 es_ES
dc.description.references Casabán, M.-C., Cortés, J.-C., Romero, J.-V., & Roselló, M.-D. (2015). Probabilistic solution of random SI-type epidemiological models using the Random Variable Transformation technique. Communications in Nonlinear Science and Numerical Simulation, 24(1-3), 86-97. doi:10.1016/j.cnsns.2014.12.016 es_ES
dc.description.references Calatayud, J., Cortés, J.-C., & Jornet, M. (2018). The damped pendulum random differential equation: A comprehensive stochastic analysis via the computation of the probability density function. Physica A: Statistical Mechanics and its Applications, 512, 261-279. doi:10.1016/j.physa.2018.08.024 es_ES
dc.description.references Calatayud, J., Cortés, J. C., & Jornet, M. (2018). Uncertainty quantification for random parabolic equations with nonhomogeneous boundary conditions on a bounded domain via the approximation of the probability density function. Mathematical Methods in the Applied Sciences, 42(17), 5649-5667. doi:10.1002/mma.5333 es_ES
dc.description.references Xiu, D. (2010). Numerical Methods for Stochastic Computations. doi:10.2307/j.ctv7h0skv es_ES
dc.description.references Chen-Charpentier, B.-M., Cortés, J.-C., Licea, J.-A., Romero, J.-V., Roselló, M.-D., Santonja, F.-J., & Villanueva, R.-J. (2015). Constructing adaptive generalized polynomial chaos method to measure the uncertainty in continuous models: A computational approach. Mathematics and Computers in Simulation, 109, 113-129. doi:10.1016/j.matcom.2014.09.002 es_ES
dc.description.references Cortés, J.-C., Romero, J.-V., Roselló, M.-D., & Villanueva, R.-J. (2017). Improving adaptive generalized polynomial chaos method to solve nonlinear random differential equations by the random variable transformation technique. Communications in Nonlinear Science and Numerical Simulation, 50, 1-15. doi:10.1016/j.cnsns.2017.02.011 es_ES
dc.description.references Stanescu, D., & Chen-Charpentier, B. M. (2009). Random coefficient differential equation models for bacterial growth. Mathematical and Computer Modelling, 50(5-6), 885-895. doi:10.1016/j.mcm.2009.05.017 es_ES
dc.description.references Calatayud, J., Cortés, J. C., Jornet, M., & Villanueva, R. J. (2018). Computational uncertainty quantification for random time-discrete epidemiological models using adaptive gPC. Mathematical Methods in the Applied Sciences, 41(18), 9618-9627. doi:10.1002/mma.5315 es_ES
dc.description.references Calatayud, J., Cortés, J.-C., & Jornet, M. (2018). On the convergence of adaptive gPC for non-linear random difference equations: Theoretical analysis and some practical recommendations. Journal of Nonlinear Sciences and Applications, 11(09), 1077-1084. doi:10.22436/jnsa.011.09.06 es_ES
dc.description.references Lesaffre, E., & Lawson, A. B. (2012). Bayesian Biostatistics. doi:10.1002/9781119942412 es_ES
dc.description.references Mohammad-Djafari, A. (2002). Bayesian inference for inverse problems. AIP Conference Proceedings. doi:10.1063/1.1477067 es_ES
dc.description.references Corberán-Vallet, A., Santonja, F. J., Jornet-Sanz, M., & Villanueva, R.-J. (2018). Modeling Chickenpox Dynamics with a Discrete Time Bayesian Stochastic Compartmental Model. Complexity, 2018, 1-9. doi:10.1155/2018/3060368 es_ES
dc.description.references Marzouk, Y. M., Najm, H. N., & Rahn, L. A. (2007). Stochastic spectral methods for efficient Bayesian solution of inverse problems. Journal of Computational Physics, 224(2), 560-586. doi:10.1016/j.jcp.2006.10.010 es_ES
dc.description.references Marzouk, Y., & Xiu, D. (2009). A Stochastic Collocation Approach to Bayesian Inference in Inverse Problems. Communications in Computational Physics, 6(4), 826-847. doi:10.4208/cicp.2009.v6.p826 es_ES
dc.description.references Turchin, P. (2001). Does population ecology have general laws? Oikos, 94(1), 17-26. doi:10.1034/j.1600-0706.2001.11310.x es_ES
dc.description.references RoosAM.Modeling Population Dynamics Netherlands: Notes from the University of Amsterdam;2014. es_ES
dc.description.references Casella, G. (1985). An Introduction to Empirical Bayes Data Analysis. The American Statistician, 39(2), 83. doi:10.2307/2682801 es_ES
dc.description.references Lunn, D. J., Thomas, A., Best, N., & Spiegelhalter, D. (2000). Statistics and Computing, 10(4), 325-337. doi:10.1023/a:1008929526011 es_ES
dc.description.references Depaoli, S., Clifton, J. P., & Cobb, P. R. (2016). Just Another Gibbs Sampler (JAGS). Journal of Educational and Behavioral Statistics, 41(6), 628-649. doi:10.3102/1076998616664876 es_ES
dc.description.references Johnson, T. R., & Kuhn, K. M. (2013). Bayesian Thurstonian models for ranking data using JAGS. Behavior Research Methods, 45(3), 857-872. doi:10.3758/s13428-012-0300-3 es_ES
dc.description.references StokesM ChenF GunesF.An introduction to Bayesian analysis with SAS/STATR software Proceedings of the SAS Global Forum 2014 Conference SAS Institute Inc Cary USA(available athttps://support.sas.com/resources/papers/proceedings14/SAS400‐2014.pdf). Citeseer; 2014. es_ES
dc.description.references Giraud, L., Langou, J., & Rozloznik, M. (2005). The loss of orthogonality in the Gram-Schmidt orthogonalization process. Computers & Mathematics with Applications, 50(7), 1069-1075. doi:10.1016/j.camwa.2005.08.009 es_ES
dc.description.references Ernst, O. G., Mugler, A., Starkloff, H.-J., & Ullmann, E. (2011). On the convergence of generalized polynomial chaos expansions. ESAIM: Mathematical Modelling and Numerical Analysis, 46(2), 317-339. doi:10.1051/m2an/2011045 es_ES
dc.description.references Shi, W., & Zhang, C. (2012). Error analysis of generalized polynomial chaos for nonlinear random ordinary differential equations. Applied Numerical Mathematics, 62(12), 1954-1964. doi:10.1016/j.apnum.2012.08.007 es_ES
dc.description.references Pukelsheim, F. (1994). The Three Sigma Rule. The American Statistician, 48(2), 88. doi:10.2307/2684253 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem