- -

Methods for Producing Transgenic Plants Resistant to CTV

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Methods for Producing Transgenic Plants Resistant to CTV

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Soler, Nuria es_ES
dc.contributor.author Plomer, Montserrat es_ES
dc.contributor.author Fagoaga, Carmen es_ES
dc.contributor.author Moreno, Pedro es_ES
dc.contributor.author Navarro, Luis es_ES
dc.contributor.author FLORES PEDAUYE, RICARDO es_ES
dc.contributor.author Peña, Leandro es_ES
dc.date.accessioned 2021-02-06T04:32:41Z
dc.date.available 2021-02-06T04:32:41Z
dc.date.issued 2019 es_ES
dc.identifier.issn 1064-3745 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160797
dc.description.abstract [EN] Conventional breeding of citrus types demands a long-term effort due to their complex reproductive biology and long juvenile period. As a compelling alternative, genetic engineering of mature tissues allows the insertion of specific traits into specific elite cultivars, including well-known and widely grown varieties and rootstocks, thus reducing the time and costs involved in improving and evaluating them. Conventional breeding for resistance to CTV in citrus varieties has been largely unsuccessful as well as cloning of the genes conferring resistance to specific citrus types. RNA interference (RNAi), based on producing dsRNAs (usually using intron-hairpin constructs) highly homologous to specific CTV sequences to trigger RNA silencing, has been employed to produce virus-resistant transgenic citrus plants. The most successful construct has been an intron-hairpin vector carrying full-length, untranslatable versions of the genes p25, p20, and p23 from the virus. Using it, we have generated full resistance against CTV in Mexican lime. Moreover, this strategy is applicable to all those citrus varieties amenable to mature transformation, including sweet oranges, sour oranges, mandarins, Citrus macrophylla, and limes. es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof Methods in Molecular Biology es_ES
dc.relation.ispartof Citrus Tristeza Virus: Methods and Protocols es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Citrus es_ES
dc.subject In vitro culture es_ES
dc.subject Genetic engineering es_ES
dc.subject Mature tissue transformation es_ES
dc.subject RNA silencing es_ES
dc.subject Virus resistance es_ES
dc.title Methods for Producing Transgenic Plants Resistant to CTV es_ES
dc.type Artículo es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1007/978-1-4939-9558-5_17 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.description.bibliographicCitation Soler, N.; Plomer, M.; Fagoaga, C.; Moreno, P.; Navarro, L.; Flores Pedauye, R.; Peña, L. (2019). Methods for Producing Transgenic Plants Resistant to CTV. Methods in Molecular Biology. 2015:229-243. https://doi.org/10.1007/978-1-4939-9558-5_17 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/978-1-4939-9558-5_17 es_ES
dc.description.upvformatpinicio 229 es_ES
dc.description.upvformatpfin 243 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2015 es_ES
dc.relation.pasarela S\406732 es_ES
dc.description.references Moreno P, Ambrós S, Albiach-Martí MR et al (2008) Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Mol Plant Pathol 9:251–268 es_ES
dc.description.references Yoshida Y (1985) Inheritance of susceptibility to Citrus tristeza virus in trifoliate orange. Bull Fruit Tree Res Stn 12:17–25 es_ES
dc.description.references Yoshida T (1993) Inheritance of immunity to Citrus tristeza virus of trifoliate orange in some citrus intergeneric hybrids. Bull Fruit Tree Res Stn 25:33–43 es_ES
dc.description.references Gmitter FG, Xiao SY, Huang S et al (1996) A localized linkage map of the Citrus tristeza virus resistance gene region. Theor Appl Genet 92:688–695 es_ES
dc.description.references Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811 es_ES
dc.description.references Smith NA, Singh SP, Wang MB et al (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320 es_ES
dc.description.references Soler N, Fagoaga C, Chiibi S et al (2011) RNAi-mediated protection against Citrus tristeza virus in transgenic Citrus plants. In: Erdmann V, Barciszewski J (eds) Non coding RNAs in plants. RNA Technologies. Springer, Berlin, Heidelberg es_ES
dc.description.references Soler N, Plomer M, Fagoaga C et al (2012) Transformation of Mexican lime with an intron-hairpin construct expressing untranslatable versions of the genes coding for the three silencing suppressors of Citrus tristeza virus confers complete resistance to the virus. Plant Biotechnol J 10:597–608 es_ES
dc.description.references Fagoaga C, López C, Hermoso de Mendoza A et al (2006) Post-transcriptional gene silencing of the p23 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Plant Mol Biol 60:153–165 es_ES
dc.description.references Ruiz-Ruiz S, Navarro B, Gisel A et al (2011) Citrus tristeza virus infection induces the accumulation of viral small RNAs (21–24-nt) mapping preferentially at the 3′-terminal region of the genomic RNA and affects the host small RNA profile. Plant Mol Biol 75:607–619 es_ES
dc.description.references Lu R, Folimonov A, Shintaku M et al (2004) Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proc Natl Acad Sci U S A 101:15742–15747 es_ES
dc.description.references Peña L, Cervera M, Fagoaga C et al (2008) Citrus. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants: tropical and subtropical fruits and nuts. Blackwell Publishing, Oxford, pp 1–62 es_ES
dc.description.references Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–479 es_ES
dc.description.references Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: b-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907 es_ES
dc.description.references Domínguez A, Hermoso de Mendoza A, Guerri J et al (2002) Pathogen-derived resistance to Citrus tristeza virus (CTV) in transgenic Mexican lime (Citrus aurantifolia (Christ.) swing.) plants expressing its p25 coat protein gene. Mol Breed 10:1–10 es_ES
dc.description.references Cambra M, Garnsey SM, Permar TA et al (1990) Detection of Citrus tristeza virus (CTV) with a mixture of monoclonal antibodies. Phytopathology 80:103 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem