- -

Correlation among fecal indicator bacteria and physicochemical parameters with the presence of Helicobacter pylori DNA in raw and drinking water from Bogota, Colombia

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Correlation among fecal indicator bacteria and physicochemical parameters with the presence of Helicobacter pylori DNA in raw and drinking water from Bogota, Colombia

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vesga, Fidson Juarismy es_ES
dc.contributor.author Moreno Trigos, Mª Yolanda es_ES
dc.contributor.author Ferrús Pérez, Mª Antonia es_ES
dc.contributor.author Ledesma-Gaitan, Lina María es_ES
dc.contributor.author Campos, Claudia es_ES
dc.contributor.author Trespalacios, Alba Alicia es_ES
dc.date.accessioned 2021-02-06T04:32:49Z
dc.date.available 2021-02-06T04:32:49Z
dc.date.issued 2019-06 es_ES
dc.identifier.issn 1083-4389 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160802
dc.description.abstract [EN] BackgroundThe quality of raw and drinking water is a matter of considerable concern due to the possibility of fecal contamination. To assess the quality and public health risk of different types of water, the fecal indicator bacteria (FIB) are used. However, some pathogens, such as Helicobacter pylori, may be present in water when FIB cannot be found.Hpylori is recognized as the causative agent of chronic gastritis, peptic and duodenal ulcers, and gastric cancer. The aim of this study was to evaluate the relationships among physicochemical parameters, FIB concentrations, and the presence of Hpylori DNA in raw and drinking water from Bogota, Colombia. Materials and MethodsA total of 310 water samples were collected 1day per week from July 2015 to August 2016, and physicochemical parameters (pH, turbidity, conductivity, and residual free chlorine) were measured. Presence of Hpylori DNA was determined and quantified by quantitative polymerase chain reaction (qPCR). Fecal indicator bacteria (total coliforms, Escherichia coli, and spores of sulfite-reducing Clostridia) were enumerated by using standard culture techniques. ResultsThirty of 155 (31%) raw water samples and forty-eight of 155 (38.7%) drinking water samples were positive for the presence of Hpylori. No statistically significant relationships were found between physicochemical parameters or FIB with the presence or absence of Hpylori in any sample (P<0.05). ConclusionsThis study provides evidence of the presence of Hpylori DNA in raw and drinking water in Bogota, and shows that the detection and enumeration of FIB and physicochemical parameters in water do not correlate with the risk of contamination with Hpylori. es_ES
dc.description.sponsorship COLCIENCIAS, Colombia, and Project Grant from Generalitat Valenciana, Spain. We greatly acknowledge the collaboration of the Aqueduct and Sewage Company of Bogota (EAB), Colombia., Grant/Award Number: Project 120356933870, CTO 642-2013 AND AICO/2018/2 es_ES
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Helicobacter es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Drinking water es_ES
dc.subject Fecal indicator bacteria es_ES
dc.subject Helicobacter pylori es_ES
dc.subject Physicochemical parameters es_ES
dc.subject QPCR es_ES
dc.subject Raw water es_ES
dc.subject.classification MICROBIOLOGIA es_ES
dc.title Correlation among fecal indicator bacteria and physicochemical parameters with the presence of Helicobacter pylori DNA in raw and drinking water from Bogota, Colombia es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/hel.12582 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COLCIENCIAS//120356933870/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COLCIENCIAS//CTO 642-2013/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2018%2F273/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.description.bibliographicCitation Vesga, FJ.; Moreno Trigos, MY.; Ferrús Pérez, MA.; Ledesma-Gaitan, LM.; Campos, C.; Trespalacios, AA. (2019). Correlation among fecal indicator bacteria and physicochemical parameters with the presence of Helicobacter pylori DNA in raw and drinking water from Bogota, Colombia. Helicobacter. 24(3):1-10. https://doi.org/10.1111/hel.12582 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/hel.12582 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 3 es_ES
dc.identifier.pmid 30950129 es_ES
dc.relation.pasarela S\394702 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Departamento Administrativo de Ciencia, Tecnología e Innovación, Colombia es_ES
dc.description.references Mansour-Rezaei, S., Naser, G., Malekpour, A., & Karney, B. W. (2013). Contaminant intrusion in water distribution systems. Journal - American Water Works Association, 105(6), E278-E290. doi:10.5942/jawwa.2013.105.0061 es_ES
dc.description.references Environmental Protection Agency – USEPA.Contaminant Candidate List (CCL) and regulatory determination. Draft Contaminant Candidate List 4‐CCL 4.2016.https://www.epa.gov/ccl/draft-contaminant-candidate-list-4-ccl-4. (Accessed January 2019). es_ES
dc.description.references Moreno, Y., & Ferrús, M. A. (2012). Specific Detection of CultivableHelicobacter pyloriCells from Wastewater Treatment Plants. Helicobacter, 17(5), 327-332. doi:10.1111/j.1523-5378.2012.00961.x es_ES
dc.description.references Aziz, R. K., Khalifa, M. M., & Sharaf, R. R. (2015). Contaminated water as a source of Helicobacter pylori infection: A review. Journal of Advanced Research, 6(4), 539-547. doi:10.1016/j.jare.2013.07.007 es_ES
dc.description.references Hooi, J. K. Y., Lai, W. Y., Ng, W. K., Suen, M. M. Y., Underwood, F. E., Tanyingoh, D., … Ng, S. C. (2017). Global Prevalence of Helicobacter pylori Infection: Systematic Review and Meta-Analysis. Gastroenterology, 153(2), 420-429. doi:10.1053/j.gastro.2017.04.022 es_ES
dc.description.references Voytek, M. A., Ashen, J. B., Kirshtein, J. D., Landa, E. R., & Fogarty, L. R. (2005). Detection of Helicobacter pylori and fecal indicator bacteria in five North American rivers. Journal of Water and Health, 3(4), 405-422. doi:10.2166/wh.2005.054 es_ES
dc.description.references Boehnke, K. F., Eaton, K. A., Valdivieso, M., Baker, L. H., & Xi, C. (2015). Animal Model Reveals Potential Waterborne Transmission ofHelicobacter pyloriInfection. Helicobacter, 20(5), 326-333. doi:10.1111/hel.12216 es_ES
dc.description.references Percival, S. L., & Suleman, L. (2014). Biofilms and Helicobacter pylori: Dissemination and persistence within the environment and host. World Journal of Gastrointestinal Pathophysiology, 5(3), 122. doi:10.4291/wjgp.v5.i3.122 es_ES
dc.description.references Azevedo, N. F., Almeida, C., Cerqueira, L., Dias, S., Keevil, C. W., & Vieira, M. J. (2007). Coccoid Form of Helicobacter pylori as a Morphological Manifestation of Cell Adaptation to the Environment. Applied and Environmental Microbiology, 73(10), 3423-3427. doi:10.1128/aem.00047-07 es_ES
dc.description.references Li, L., Mendis, N., Trigui, H., Oliver, J. D., & Faucher, S. P. (2014). The importance of the viable but non-culturable state in human bacterial pathogens. Frontiers in Microbiology, 5. doi:10.3389/fmicb.2014.00258 es_ES
dc.description.references Hulten, K., Han, S., Enroth, H., Klein, P., Opekun, A., Gilman, R., … El-Zaatari, F. (1996). Helicobacter pylori in the drinking water in Peru. Gastroenterology, 110(4), 1031-1035. doi:10.1053/gast.1996.v110.pm8612990 es_ES
dc.description.references Santiago, P., Moreno, Y., & Ferrús, M. A. (2015). Identification of ViableHelicobacter pyloriin Drinking Water Supplies by Cultural and Molecular Techniques. Helicobacter, 20(4), 252-259. doi:10.1111/hel.12205 es_ES
dc.description.references Vesga, F.-J., Moreno, Y., Ferrús, M. A., Campos, C., & Trespalacios, A. A. (2018). Detection of Helicobacter pylori in drinking water treatment plants in Bogotá, Colombia, using cultural and molecular techniques. International Journal of Hygiene and Environmental Health, 221(4), 595-601. doi:10.1016/j.ijheh.2018.04.010 es_ES
dc.description.references Moreno, Y., Ferrús, M. A., Alonso, J. L., Jiménez, A., & Hernández, J. (2003). Use of fluorescent in situ hybridization to evidence the presence of Helicobacter pylori in water. Water Research, 37(9), 2251-2256. doi:10.1016/s0043-1354(02)00624-3 es_ES
dc.description.references Al-Sulami, A. A., Al-Edani, T. A. A., & Al-Abdula, A. A. (2012). Culture Method and PCR for the Detection ofHelicobacter pyloriin Drinking Water in Basrah Governorate Iraq. Gastroenterology Research and Practice, 2012, 1-5. doi:10.1155/2012/245167 es_ES
dc.description.references Lu, Y., Redlinger, T. E., Avitia, R., Galindo, A., & Goodman, K. (2002). Isolation and Genotyping of Helicobacter pylori from Untreated Municipal Wastewater. Applied and Environmental Microbiology, 68(3), 1436-1439. doi:10.1128/aem.68.3.1436-1439.2002 es_ES
dc.description.references Adams, B. L., Bates, T. C., & Oliver, J. D. (2003). Survival of Helicobacter pylori in a Natural Freshwater Environment. Applied and Environmental Microbiology, 69(12), 7462-7466. doi:10.1128/aem.69.12.7462-7466.2003 es_ES
dc.description.references McDaniels, A. E., Wymer, L., Rankin, C., & Haugland, R. (2005). Evaluation of quantitative real time PCR for the measurement of Helicobacter pylori at low concentrations in drinking water. Water Research, 39(19), 4808-4816. doi:10.1016/j.watres.2005.09.030 es_ES
dc.description.references Montero Campos, V., Hernández Soto, A., & Sandoval, J. C. (2014). Culture and Molecular Identification of &lt;i&gt;Helicobacter pylori&lt;/i&gt; in Drinking Water from Areas of High and Low Incidence of Gastric Cancer in Costa Rica. Open Journal of Medical Microbiology, 04(04), 261-269. doi:10.4236/ojmm.2014.44030 es_ES
dc.description.references Bai, X., Xi, C., & Wu, J. (2016). Survival of Helicobacter pylori in the wastewater treatment process and the receiving river in Michigan, USA. Journal of Water and Health, 14(4), 692-698. doi:10.2166/wh.2016.259 es_ES
dc.description.references Rodríguez, D. C., Pino, N., & Peñuela, G. (2012). Microbiological quality indicators in waters of dairy farms: Detection of pathogens by PCR in real time. Science of The Total Environment, 427-428, 314-318. doi:10.1016/j.scitotenv.2012.03.052 es_ES
dc.description.references Wu, J., Long, S. C., Das, D., & Dorner, S. M. (2011). Are microbial indicators and pathogens correlated? A statistical analysis of 40 years of research. Journal of Water and Health, 9(2), 265-278. doi:10.2166/wh.2011.117 es_ES
dc.description.references Luby, S. P., Halder, A. K., Huda, T. M., Unicomb, L., Islam, M. S., Arnold, B. F., & Johnston, R. B. (2015). Microbiological Contamination of Drinking Water Associated with Subsequent Child Diarrhea. The American Journal of Tropical Medicine and Hygiene, 93(5), 904-911. doi:10.4269/ajtmh.15-0274 es_ES
dc.description.references Levy, K., Hubbard, A. E., Nelson, K. L., & Eisenberg, J. N. S. (2009). Drivers of Water Quality Variability in Northern Coastal Ecuador. Environmental Science & Technology, 43(6), 1788-1797. doi:10.1021/es8022545 es_ES
dc.description.references Holvoet, K., Sampers, I., Seynnaeve, M., & Uyttendaele, M. (2014). Relationships among hygiene indicators and enteric pathogens in irrigation water, soil and lettuce and the impact of climatic conditions on contamination in the lettuce primary production. International Journal of Food Microbiology, 171, 21-31. doi:10.1016/j.ijfoodmicro.2013.11.009 es_ES
dc.description.references Castro-Ibáñez, I., Gil, M. I., Tudela, J. A., Ivanek, R., & Allende, A. (2015). Assessment of microbial risk factors and impact of meteorological conditions during production of baby spinach in the Southeast of Spain. Food Microbiology, 49, 173-181. doi:10.1016/j.fm.2015.02.004 es_ES
dc.description.references Zhang, Y., Riley, L. K., Lin, M., & Hu, Z. (2012). Determination of low-density Escherichia coli and Helicobacter pylori suspensions in water. Water Research, 46(7), 2140-2148. doi:10.1016/j.watres.2012.01.030 es_ES
dc.description.references Boehnke, K. F., Brewster, R. K., Sánchez, B. N., Valdivieso, M., Bussalleu, A., Guevara, M., … Xi, C. (2018). An assessment of drinking water contamination with Helicobacter pylori in Lima, Peru. Helicobacter, 23(2), e12462. doi:10.1111/hel.12462 es_ES
dc.description.references Griffith, J. F., Weisberg, S. B., Arnold, B. F., Cao, Y., Schiff, K. C., & Colford, J. M. (2016). Epidemiologic evaluation of multiple alternate microbial water quality monitoring indicators at three California beaches. Water Research, 94, 371-381. doi:10.1016/j.watres.2016.02.036 es_ES
dc.description.references Organización Panamericana de la Salud ‐ OPS/ WHO.Procedimientos para la búsqueda de Vibrio cholerae en muestras ambientales;2010 http://www.paho.org/hq/dmdocuments/2010/Muestreo_ambiental_V_cholerae.pdf?ua=1. (Accessed May 2015). es_ES
dc.description.references Enroth, H., & Engstrand, L. (1995). Immunomagnetic separation and PCR for detection of Helicobacter pylori in water and stool specimens. Journal of Clinical Microbiology, 33(8), 2162-2165. doi:10.1128/jcm.33.8.2162-2165.1995 es_ES
dc.description.references Nilsson, H.-O., Blom, J., Al-Soud, W. A., Ljungh, A., Andersen, L. P., & Wadström, T. (2002). Effect of Cold Starvation, Acid Stress, and Nutrients on Metabolic Activity of Helicobacter pylori. Applied and Environmental Microbiology, 68(1), 11-19. doi:10.1128/aem.68.1.11-19.2002 es_ES
dc.description.references Foegeding, N., Caston, R., McClain, M., Ohi, M., & Cover, T. (2016). An Overview of Helicobacter pylori VacA Toxin Biology. Toxins, 8(6), 173. doi:10.3390/toxins8060173 es_ES
dc.description.references Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389 es_ES
dc.description.references Organization for Standardization (ISO): 9308–1.Water Quality‐ Enumeration ofEscherichia coliand Coliform Bacteria – Part 1: Membrane Filtration Method for Water with low bacteria background flora. International; flora.2014. es_ES
dc.description.references International Organization for Standardization (ISO): 6461–2.Water Quality‐ Detection and Enumeration of the Spores of Sulfite‐Reducing Anaerobes (Clostridia) – Part 2: Method by Membrane Filtration.1986. es_ES
dc.description.references GonzálezJA.Manual básico SPSS. Universidad de Talca. Talca Chile.2009 P. 70. es_ES
dc.description.references de Salud Ministerio.Resolution 2115 of the 2007. Web site:http://www.minsalud.gov.co/. (Accessed May 2018). es_ES
dc.description.references Environmental Protection Agency – USEPA.Contaminant Candidate List (CCL) and Regulatory Determination. Draft Contaminant Candidate List 1‐CCL 1;2004.https://www.epa.gov/ccl/draft-contaminant-candidate-list-1-ccl-1#microbial-list. (Accessed June 2018). es_ES
dc.description.references Ryan, M., Hamilton, K., Hamilton, M., & Haas, C. N. (2014). Evaluating the Potential for aHelicobacter pyloriDrinking Water Guideline. Risk Analysis, 34(9), 1651-1662. doi:10.1111/risa.12190 es_ES
dc.description.references Bahrami, A. R., Rahimi, E., & Ghasemian Safaei, H. (2013). Detection ofHelicobacter pyloriin City Water, Dental Units’ Water, and Bottled Mineral Water in Isfahan, Iran. The Scientific World Journal, 2013, 1-5. doi:10.1155/2013/280510 es_ES
dc.description.references Baker, K. H., & Hegarty, J. P. (2001). Presence of Helicobacter pylori in Drinking Water is Associated with Clinical Infection. Scandinavian Journal of Infectious Diseases, 33(10), 744-746. doi:10.1080/003655401317074536 es_ES
dc.description.references Mazari-Hiriart, M., López-Vidal, Y., & Calva, J. J. (2001). Helicobacter pylori in water systems for human use in Mexico City. Water Science and Technology, 43(12), 93-98. doi:10.2166/wst.2001.0718 es_ES
dc.description.references Travis, P. B., Goodman, K. J., O’Rourke, K. M., Groves, F. D., Sinha, D., Nicholas, J. S., … Mena, K. D. (2009). The association of drinking water quality and sewage disposal with Helicobacter pylori incidence in infants: the potential role of water-borne transmission. Journal of Water and Health, 8(1), 192-203. doi:10.2166/wh.2009.040 es_ES
dc.description.references Twing, K. I., Kirchman, D. L., & Campbell, B. J. (2011). Temporal study of Helicobacter pylori presence in coastal freshwater, estuary and marine waters. Water Research, 45(4), 1897-1905. doi:10.1016/j.watres.2010.12.013 es_ES
dc.description.references FERNANDEZ, H., OTTH, L., & WILSON, M. (2003). Isolation of thermotolerant species of Campylobacter from river water using two collection methods. Archivos de medicina veterinaria, 35(1). doi:10.4067/s0301-732x2003000100010 es_ES
dc.description.references McEgan, R., Rodrigues, C. A. P., Sbodio, A., Suslow, T. V., Goodridge, L. D., & Danyluk, M. D. (2012). Detection of Salmonella spp. from large volumes of water by modified Moore swabs and tangential flow filtration. Letters in Applied Microbiology, 56(2), 88-94. doi:10.1111/lam.12016 es_ES
dc.description.references Araujo BoiraR HanninenML.Helicobacter pylori. In: Rose JB Jiménez‐Cisneros B (eds). Global Water Pathogen Project. (A. Pruden N. Ashbolt and J. Miller (eds) Part 3 Bacteria). Michigan State University. E. Lansing MI: UNESCO:2017.http://www.waterpathogens.orghttp://www.waterpathogens.org/book/helicobacter-pylorihttps://doi.org/10.14321/waterpathogens.25. es_ES
dc.description.references Ferguson, C. M., Coote, B. G., Ashbolt, N. J., & Stevenson, I. M. (1996). Relationships between indicators, pathogens and water quality in an estuarine system. Water Research, 30(9), 2045-2054. doi:10.1016/0043-1354(96)00079-6 es_ES
dc.description.references Harwood, V. J., Levine, A. D., Scott, T. M., Chivukula, V., Lukasik, J., Farrah, S. R., & Rose, J. B. (2005). Validity of the Indicator Organism Paradigm for Pathogen Reduction in Reclaimed Water and Public Health Protection. Applied and Environmental Microbiology, 71(6), 3163-3170. doi:10.1128/aem.71.6.3163-3170.2005 es_ES
dc.description.references Cheng, H.-W. A., Broaders, M. A., Lucy, F. E., Mastitsky, S. E., & Graczyk, T. K. (2012). Determining potential indicators of Cryptosporidium oocysts throughout the wastewater treatment process. Water Science and Technology, 65(5), 875-882. doi:10.2166/wst.2012.918 es_ES
dc.description.references Nayak, A. K., & Rose, J. B. (2007). Detection of Helicobacter pylori in sewage and water using a new quantitative PCR method with SYBR® green. Journal of Applied Microbiology, 103(5), 1931-1941. doi:10.1111/j.1365-2672.2007.03435.x es_ES
dc.description.references Saito, N., Konishi, K., Sato, F., Kato, M., Takeda, H., Sugiyama, T., & Asaka, M. (2003). Plural Transformation-Processes from Spiral to Coccoid Helicobacter pylori and its Viability. Journal of Infection, 46(1), 49-55. doi:10.1053/jinf.2002.1047 es_ES
dc.description.references Ministerio del Medio Ambiente.Decree 1594 of the 1984. Web site.http://www.minambiente.gov.co/. (Accessed May 2018). es_ES
dc.description.references Bragança, S. M., Azevedo, N. F., Simões, L. C., Keevil, C. W., & Vieira, M. J. (2007). Use of fluorescent in situ hybridisation for the visualisation of Helicobacter pylori in real drinking water biofilms. Water Science and Technology, 55(8-9), 387-393. doi:10.2166/wst.2007.282 es_ES
dc.description.references Hegarty, J. P., Dowd, M. T., & Baker, K. H. (1999). Occurrence of Helicobacter pylori in surface water in the United States. Journal of Applied Microbiology, 87(5), 697-701. doi:10.1046/j.1365-2672.1999.00912.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem