Mostrar el registro sencillo del ítem
dc.contributor.author | Vesga, Fidson Juarismy | es_ES |
dc.contributor.author | Moreno Trigos, Mª Yolanda | es_ES |
dc.contributor.author | Ferrús Pérez, Mª Antonia | es_ES |
dc.contributor.author | Ledesma-Gaitan, Lina María | es_ES |
dc.contributor.author | Campos, Claudia | es_ES |
dc.contributor.author | Trespalacios, Alba Alicia | es_ES |
dc.date.accessioned | 2021-02-06T04:32:49Z | |
dc.date.available | 2021-02-06T04:32:49Z | |
dc.date.issued | 2019-06 | es_ES |
dc.identifier.issn | 1083-4389 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160802 | |
dc.description.abstract | [EN] BackgroundThe quality of raw and drinking water is a matter of considerable concern due to the possibility of fecal contamination. To assess the quality and public health risk of different types of water, the fecal indicator bacteria (FIB) are used. However, some pathogens, such as Helicobacter pylori, may be present in water when FIB cannot be found.Hpylori is recognized as the causative agent of chronic gastritis, peptic and duodenal ulcers, and gastric cancer. The aim of this study was to evaluate the relationships among physicochemical parameters, FIB concentrations, and the presence of Hpylori DNA in raw and drinking water from Bogota, Colombia. Materials and MethodsA total of 310 water samples were collected 1day per week from July 2015 to August 2016, and physicochemical parameters (pH, turbidity, conductivity, and residual free chlorine) were measured. Presence of Hpylori DNA was determined and quantified by quantitative polymerase chain reaction (qPCR). Fecal indicator bacteria (total coliforms, Escherichia coli, and spores of sulfite-reducing Clostridia) were enumerated by using standard culture techniques. ResultsThirty of 155 (31%) raw water samples and forty-eight of 155 (38.7%) drinking water samples were positive for the presence of Hpylori. No statistically significant relationships were found between physicochemical parameters or FIB with the presence or absence of Hpylori in any sample (P<0.05). ConclusionsThis study provides evidence of the presence of Hpylori DNA in raw and drinking water in Bogota, and shows that the detection and enumeration of FIB and physicochemical parameters in water do not correlate with the risk of contamination with Hpylori. | es_ES |
dc.description.sponsorship | COLCIENCIAS, Colombia, and Project Grant from Generalitat Valenciana, Spain. We greatly acknowledge the collaboration of the Aqueduct and Sewage Company of Bogota (EAB), Colombia., Grant/Award Number: Project 120356933870, CTO 642-2013 AND AICO/2018/2 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | Helicobacter | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Drinking water | es_ES |
dc.subject | Fecal indicator bacteria | es_ES |
dc.subject | Helicobacter pylori | es_ES |
dc.subject | Physicochemical parameters | es_ES |
dc.subject | QPCR | es_ES |
dc.subject | Raw water | es_ES |
dc.subject.classification | MICROBIOLOGIA | es_ES |
dc.title | Correlation among fecal indicator bacteria and physicochemical parameters with the presence of Helicobacter pylori DNA in raw and drinking water from Bogota, Colombia | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/hel.12582 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/COLCIENCIAS//120356933870/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/COLCIENCIAS//CTO 642-2013/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2018%2F273/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Vesga, FJ.; Moreno Trigos, MY.; Ferrús Pérez, MA.; Ledesma-Gaitan, LM.; Campos, C.; Trespalacios, AA. (2019). Correlation among fecal indicator bacteria and physicochemical parameters with the presence of Helicobacter pylori DNA in raw and drinking water from Bogota, Colombia. Helicobacter. 24(3):1-10. https://doi.org/10.1111/hel.12582 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1111/hel.12582 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.pmid | 30950129 | es_ES |
dc.relation.pasarela | S\394702 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Departamento Administrativo de Ciencia, Tecnología e Innovación, Colombia | es_ES |
dc.description.references | Mansour-Rezaei, S., Naser, G., Malekpour, A., & Karney, B. W. (2013). Contaminant intrusion in water distribution systems. Journal - American Water Works Association, 105(6), E278-E290. doi:10.5942/jawwa.2013.105.0061 | es_ES |
dc.description.references | Environmental Protection Agency – USEPA.Contaminant Candidate List (CCL) and regulatory determination. Draft Contaminant Candidate List 4‐CCL 4.2016.https://www.epa.gov/ccl/draft-contaminant-candidate-list-4-ccl-4. (Accessed January 2019). | es_ES |
dc.description.references | Moreno, Y., & Ferrús, M. A. (2012). Specific Detection of CultivableHelicobacter pyloriCells from Wastewater Treatment Plants. Helicobacter, 17(5), 327-332. doi:10.1111/j.1523-5378.2012.00961.x | es_ES |
dc.description.references | Aziz, R. K., Khalifa, M. M., & Sharaf, R. R. (2015). Contaminated water as a source of Helicobacter pylori infection: A review. Journal of Advanced Research, 6(4), 539-547. doi:10.1016/j.jare.2013.07.007 | es_ES |
dc.description.references | Hooi, J. K. Y., Lai, W. Y., Ng, W. K., Suen, M. M. Y., Underwood, F. E., Tanyingoh, D., … Ng, S. C. (2017). Global Prevalence of Helicobacter pylori Infection: Systematic Review and Meta-Analysis. Gastroenterology, 153(2), 420-429. doi:10.1053/j.gastro.2017.04.022 | es_ES |
dc.description.references | Voytek, M. A., Ashen, J. B., Kirshtein, J. D., Landa, E. R., & Fogarty, L. R. (2005). Detection of Helicobacter pylori and fecal indicator bacteria in five North American rivers. Journal of Water and Health, 3(4), 405-422. doi:10.2166/wh.2005.054 | es_ES |
dc.description.references | Boehnke, K. F., Eaton, K. A., Valdivieso, M., Baker, L. H., & Xi, C. (2015). Animal Model Reveals Potential Waterborne Transmission ofHelicobacter pyloriInfection. Helicobacter, 20(5), 326-333. doi:10.1111/hel.12216 | es_ES |
dc.description.references | Percival, S. L., & Suleman, L. (2014). Biofilms and Helicobacter pylori: Dissemination and persistence within the environment and host. World Journal of Gastrointestinal Pathophysiology, 5(3), 122. doi:10.4291/wjgp.v5.i3.122 | es_ES |
dc.description.references | Azevedo, N. F., Almeida, C., Cerqueira, L., Dias, S., Keevil, C. W., & Vieira, M. J. (2007). Coccoid Form of Helicobacter pylori as a Morphological Manifestation of Cell Adaptation to the Environment. Applied and Environmental Microbiology, 73(10), 3423-3427. doi:10.1128/aem.00047-07 | es_ES |
dc.description.references | Li, L., Mendis, N., Trigui, H., Oliver, J. D., & Faucher, S. P. (2014). The importance of the viable but non-culturable state in human bacterial pathogens. Frontiers in Microbiology, 5. doi:10.3389/fmicb.2014.00258 | es_ES |
dc.description.references | Hulten, K., Han, S., Enroth, H., Klein, P., Opekun, A., Gilman, R., … El-Zaatari, F. (1996). Helicobacter pylori in the drinking water in Peru. Gastroenterology, 110(4), 1031-1035. doi:10.1053/gast.1996.v110.pm8612990 | es_ES |
dc.description.references | Santiago, P., Moreno, Y., & Ferrús, M. A. (2015). Identification of ViableHelicobacter pyloriin Drinking Water Supplies by Cultural and Molecular Techniques. Helicobacter, 20(4), 252-259. doi:10.1111/hel.12205 | es_ES |
dc.description.references | Vesga, F.-J., Moreno, Y., Ferrús, M. A., Campos, C., & Trespalacios, A. A. (2018). Detection of Helicobacter pylori in drinking water treatment plants in Bogotá, Colombia, using cultural and molecular techniques. International Journal of Hygiene and Environmental Health, 221(4), 595-601. doi:10.1016/j.ijheh.2018.04.010 | es_ES |
dc.description.references | Moreno, Y., Ferrús, M. A., Alonso, J. L., Jiménez, A., & Hernández, J. (2003). Use of fluorescent in situ hybridization to evidence the presence of Helicobacter pylori in water. Water Research, 37(9), 2251-2256. doi:10.1016/s0043-1354(02)00624-3 | es_ES |
dc.description.references | Al-Sulami, A. A., Al-Edani, T. A. A., & Al-Abdula, A. A. (2012). Culture Method and PCR for the Detection ofHelicobacter pyloriin Drinking Water in Basrah Governorate Iraq. Gastroenterology Research and Practice, 2012, 1-5. doi:10.1155/2012/245167 | es_ES |
dc.description.references | Lu, Y., Redlinger, T. E., Avitia, R., Galindo, A., & Goodman, K. (2002). Isolation and Genotyping of Helicobacter pylori from Untreated Municipal Wastewater. Applied and Environmental Microbiology, 68(3), 1436-1439. doi:10.1128/aem.68.3.1436-1439.2002 | es_ES |
dc.description.references | Adams, B. L., Bates, T. C., & Oliver, J. D. (2003). Survival of Helicobacter pylori in a Natural Freshwater Environment. Applied and Environmental Microbiology, 69(12), 7462-7466. doi:10.1128/aem.69.12.7462-7466.2003 | es_ES |
dc.description.references | McDaniels, A. E., Wymer, L., Rankin, C., & Haugland, R. (2005). Evaluation of quantitative real time PCR for the measurement of Helicobacter pylori at low concentrations in drinking water. Water Research, 39(19), 4808-4816. doi:10.1016/j.watres.2005.09.030 | es_ES |
dc.description.references | Montero Campos, V., Hernández Soto, A., & Sandoval, J. C. (2014). Culture and Molecular Identification of <i>Helicobacter pylori</i> in Drinking Water from Areas of High and Low Incidence of Gastric Cancer in Costa Rica. Open Journal of Medical Microbiology, 04(04), 261-269. doi:10.4236/ojmm.2014.44030 | es_ES |
dc.description.references | Bai, X., Xi, C., & Wu, J. (2016). Survival of Helicobacter pylori in the wastewater treatment process and the receiving river in Michigan, USA. Journal of Water and Health, 14(4), 692-698. doi:10.2166/wh.2016.259 | es_ES |
dc.description.references | Rodríguez, D. C., Pino, N., & Peñuela, G. (2012). Microbiological quality indicators in waters of dairy farms: Detection of pathogens by PCR in real time. Science of The Total Environment, 427-428, 314-318. doi:10.1016/j.scitotenv.2012.03.052 | es_ES |
dc.description.references | Wu, J., Long, S. C., Das, D., & Dorner, S. M. (2011). Are microbial indicators and pathogens correlated? A statistical analysis of 40 years of research. Journal of Water and Health, 9(2), 265-278. doi:10.2166/wh.2011.117 | es_ES |
dc.description.references | Luby, S. P., Halder, A. K., Huda, T. M., Unicomb, L., Islam, M. S., Arnold, B. F., & Johnston, R. B. (2015). Microbiological Contamination of Drinking Water Associated with Subsequent Child Diarrhea. The American Journal of Tropical Medicine and Hygiene, 93(5), 904-911. doi:10.4269/ajtmh.15-0274 | es_ES |
dc.description.references | Levy, K., Hubbard, A. E., Nelson, K. L., & Eisenberg, J. N. S. (2009). Drivers of Water Quality Variability in Northern Coastal Ecuador. Environmental Science & Technology, 43(6), 1788-1797. doi:10.1021/es8022545 | es_ES |
dc.description.references | Holvoet, K., Sampers, I., Seynnaeve, M., & Uyttendaele, M. (2014). Relationships among hygiene indicators and enteric pathogens in irrigation water, soil and lettuce and the impact of climatic conditions on contamination in the lettuce primary production. International Journal of Food Microbiology, 171, 21-31. doi:10.1016/j.ijfoodmicro.2013.11.009 | es_ES |
dc.description.references | Castro-Ibáñez, I., Gil, M. I., Tudela, J. A., Ivanek, R., & Allende, A. (2015). Assessment of microbial risk factors and impact of meteorological conditions during production of baby spinach in the Southeast of Spain. Food Microbiology, 49, 173-181. doi:10.1016/j.fm.2015.02.004 | es_ES |
dc.description.references | Zhang, Y., Riley, L. K., Lin, M., & Hu, Z. (2012). Determination of low-density Escherichia coli and Helicobacter pylori suspensions in water. Water Research, 46(7), 2140-2148. doi:10.1016/j.watres.2012.01.030 | es_ES |
dc.description.references | Boehnke, K. F., Brewster, R. K., Sánchez, B. N., Valdivieso, M., Bussalleu, A., Guevara, M., … Xi, C. (2018). An assessment of drinking water contamination with Helicobacter pylori in Lima, Peru. Helicobacter, 23(2), e12462. doi:10.1111/hel.12462 | es_ES |
dc.description.references | Griffith, J. F., Weisberg, S. B., Arnold, B. F., Cao, Y., Schiff, K. C., & Colford, J. M. (2016). Epidemiologic evaluation of multiple alternate microbial water quality monitoring indicators at three California beaches. Water Research, 94, 371-381. doi:10.1016/j.watres.2016.02.036 | es_ES |
dc.description.references | Organización Panamericana de la Salud ‐ OPS/ WHO.Procedimientos para la búsqueda de Vibrio cholerae en muestras ambientales;2010 http://www.paho.org/hq/dmdocuments/2010/Muestreo_ambiental_V_cholerae.pdf?ua=1. (Accessed May 2015). | es_ES |
dc.description.references | Enroth, H., & Engstrand, L. (1995). Immunomagnetic separation and PCR for detection of Helicobacter pylori in water and stool specimens. Journal of Clinical Microbiology, 33(8), 2162-2165. doi:10.1128/jcm.33.8.2162-2165.1995 | es_ES |
dc.description.references | Nilsson, H.-O., Blom, J., Al-Soud, W. A., Ljungh, A., Andersen, L. P., & Wadström, T. (2002). Effect of Cold Starvation, Acid Stress, and Nutrients on Metabolic Activity of Helicobacter pylori. Applied and Environmental Microbiology, 68(1), 11-19. doi:10.1128/aem.68.1.11-19.2002 | es_ES |
dc.description.references | Foegeding, N., Caston, R., McClain, M., Ohi, M., & Cover, T. (2016). An Overview of Helicobacter pylori VacA Toxin Biology. Toxins, 8(6), 173. doi:10.3390/toxins8060173 | es_ES |
dc.description.references | Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389 | es_ES |
dc.description.references | Organization for Standardization (ISO): 9308–1.Water Quality‐ Enumeration ofEscherichia coliand Coliform Bacteria – Part 1: Membrane Filtration Method for Water with low bacteria background flora. International; flora.2014. | es_ES |
dc.description.references | International Organization for Standardization (ISO): 6461–2.Water Quality‐ Detection and Enumeration of the Spores of Sulfite‐Reducing Anaerobes (Clostridia) – Part 2: Method by Membrane Filtration.1986. | es_ES |
dc.description.references | GonzálezJA.Manual básico SPSS. Universidad de Talca. Talca Chile.2009 P. 70. | es_ES |
dc.description.references | de Salud Ministerio.Resolution 2115 of the 2007. Web site:http://www.minsalud.gov.co/. (Accessed May 2018). | es_ES |
dc.description.references | Environmental Protection Agency – USEPA.Contaminant Candidate List (CCL) and Regulatory Determination. Draft Contaminant Candidate List 1‐CCL 1;2004.https://www.epa.gov/ccl/draft-contaminant-candidate-list-1-ccl-1#microbial-list. (Accessed June 2018). | es_ES |
dc.description.references | Ryan, M., Hamilton, K., Hamilton, M., & Haas, C. N. (2014). Evaluating the Potential for aHelicobacter pyloriDrinking Water Guideline. Risk Analysis, 34(9), 1651-1662. doi:10.1111/risa.12190 | es_ES |
dc.description.references | Bahrami, A. R., Rahimi, E., & Ghasemian Safaei, H. (2013). Detection ofHelicobacter pyloriin City Water, Dental Units’ Water, and Bottled Mineral Water in Isfahan, Iran. The Scientific World Journal, 2013, 1-5. doi:10.1155/2013/280510 | es_ES |
dc.description.references | Baker, K. H., & Hegarty, J. P. (2001). Presence of Helicobacter pylori in Drinking Water is Associated with Clinical Infection. Scandinavian Journal of Infectious Diseases, 33(10), 744-746. doi:10.1080/003655401317074536 | es_ES |
dc.description.references | Mazari-Hiriart, M., López-Vidal, Y., & Calva, J. J. (2001). Helicobacter pylori in water systems for human use in Mexico City. Water Science and Technology, 43(12), 93-98. doi:10.2166/wst.2001.0718 | es_ES |
dc.description.references | Travis, P. B., Goodman, K. J., O’Rourke, K. M., Groves, F. D., Sinha, D., Nicholas, J. S., … Mena, K. D. (2009). The association of drinking water quality and sewage disposal with Helicobacter pylori incidence in infants: the potential role of water-borne transmission. Journal of Water and Health, 8(1), 192-203. doi:10.2166/wh.2009.040 | es_ES |
dc.description.references | Twing, K. I., Kirchman, D. L., & Campbell, B. J. (2011). Temporal study of Helicobacter pylori presence in coastal freshwater, estuary and marine waters. Water Research, 45(4), 1897-1905. doi:10.1016/j.watres.2010.12.013 | es_ES |
dc.description.references | FERNANDEZ, H., OTTH, L., & WILSON, M. (2003). Isolation of thermotolerant species of Campylobacter from river water using two collection methods. Archivos de medicina veterinaria, 35(1). doi:10.4067/s0301-732x2003000100010 | es_ES |
dc.description.references | McEgan, R., Rodrigues, C. A. P., Sbodio, A., Suslow, T. V., Goodridge, L. D., & Danyluk, M. D. (2012). Detection of Salmonella spp. from large volumes of water by modified Moore swabs and tangential flow filtration. Letters in Applied Microbiology, 56(2), 88-94. doi:10.1111/lam.12016 | es_ES |
dc.description.references | Araujo BoiraR HanninenML.Helicobacter pylori. In: Rose JB Jiménez‐Cisneros B (eds). Global Water Pathogen Project. (A. Pruden N. Ashbolt and J. Miller (eds) Part 3 Bacteria). Michigan State University. E. Lansing MI: UNESCO:2017.http://www.waterpathogens.orghttp://www.waterpathogens.org/book/helicobacter-pylorihttps://doi.org/10.14321/waterpathogens.25. | es_ES |
dc.description.references | Ferguson, C. M., Coote, B. G., Ashbolt, N. J., & Stevenson, I. M. (1996). Relationships between indicators, pathogens and water quality in an estuarine system. Water Research, 30(9), 2045-2054. doi:10.1016/0043-1354(96)00079-6 | es_ES |
dc.description.references | Harwood, V. J., Levine, A. D., Scott, T. M., Chivukula, V., Lukasik, J., Farrah, S. R., & Rose, J. B. (2005). Validity of the Indicator Organism Paradigm for Pathogen Reduction in Reclaimed Water and Public Health Protection. Applied and Environmental Microbiology, 71(6), 3163-3170. doi:10.1128/aem.71.6.3163-3170.2005 | es_ES |
dc.description.references | Cheng, H.-W. A., Broaders, M. A., Lucy, F. E., Mastitsky, S. E., & Graczyk, T. K. (2012). Determining potential indicators of Cryptosporidium oocysts throughout the wastewater treatment process. Water Science and Technology, 65(5), 875-882. doi:10.2166/wst.2012.918 | es_ES |
dc.description.references | Nayak, A. K., & Rose, J. B. (2007). Detection of Helicobacter pylori in sewage and water using a new quantitative PCR method with SYBR® green. Journal of Applied Microbiology, 103(5), 1931-1941. doi:10.1111/j.1365-2672.2007.03435.x | es_ES |
dc.description.references | Saito, N., Konishi, K., Sato, F., Kato, M., Takeda, H., Sugiyama, T., & Asaka, M. (2003). Plural Transformation-Processes from Spiral to Coccoid Helicobacter pylori and its Viability. Journal of Infection, 46(1), 49-55. doi:10.1053/jinf.2002.1047 | es_ES |
dc.description.references | Ministerio del Medio Ambiente.Decree 1594 of the 1984. Web site.http://www.minambiente.gov.co/. (Accessed May 2018). | es_ES |
dc.description.references | Bragança, S. M., Azevedo, N. F., Simões, L. C., Keevil, C. W., & Vieira, M. J. (2007). Use of fluorescent in situ hybridisation for the visualisation of Helicobacter pylori in real drinking water biofilms. Water Science and Technology, 55(8-9), 387-393. doi:10.2166/wst.2007.282 | es_ES |
dc.description.references | Hegarty, J. P., Dowd, M. T., & Baker, K. H. (1999). Occurrence of Helicobacter pylori in surface water in the United States. Journal of Applied Microbiology, 87(5), 697-701. doi:10.1046/j.1365-2672.1999.00912.x | es_ES |