Mostrar el registro sencillo del ítem
dc.contributor.author | Herrero Debón, Alicia | es_ES |
dc.contributor.author | Thome, Néstor | es_ES |
dc.date.accessioned | 2021-02-06T04:33:02Z | |
dc.date.available | 2021-02-06T04:33:02Z | |
dc.date.issued | 2020-02-01 | es_ES |
dc.identifier.issn | 0096-3003 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160809 | |
dc.description.abstract | [EN] This paper deals with autonomous linear systems and the sharp partial order. Given an autonomous linear system, we find another system, which is related to the first one by means of the sharp partial order. This relation can be interpreted in different ways: as a perturbation or as a projection of the initial system. Both points of view allow us to work with a new system with some previously selected behaviour. The solutions of the two systems are related via a matrix that gives the gap between them. We design some algorithms and analize their performance with numerical examples. | es_ES |
dc.description.sponsorship | This research was partially supported by Ministerio de Economia, Industria y Competitividad of Spain (Red de Excelencia MTM2017-90682-REDT) and by Universidad de Buenos Aires (EXP-UBA: 13.019/2017, 20020170100350BA). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Applied Mathematics and Computation | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Generalized inverses | es_ES |
dc.subject | Sharp partial order | es_ES |
dc.subject | Linear systems | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Sharp partial order and linear autonomous systems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.amc.2019.124736 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UBA//20020170100350BA/ES/PROBLEMAS INVERSOS: TEORÍA Y APLICACIONES I/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UBA//13.019%2F2017/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//MTM2017-90682-REDT/ES/RED TEMATICA DE ALGEBRA LINEAL, ANALISIS MATRICIAL Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Herrero Debón, A.; Thome, N. (2020). Sharp partial order and linear autonomous systems. Applied Mathematics and Computation. 366:1-11. https://doi.org/10.1016/j.amc.2019.124736 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.amc.2019.124736 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 366 | es_ES |
dc.relation.pasarela | S\392942 | es_ES |
dc.contributor.funder | Universidad de Buenos Aires | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Cvetković-Ilić, D. S., Mosić, D., & Wei, Y. (2015). Partial orders on B(H). Linear Algebra and its Applications, 481, 115-130. doi:10.1016/j.laa.2015.04.025 | es_ES |
dc.description.references | Hartwig, R. E., & Spindelböck, K. (1983). Matrices for whichA∗andA†commute. Linear and Multilinear Algebra, 14(3), 241-256. doi:10.1080/03081088308817561 | es_ES |
dc.description.references | Makarenkov, O., & Nistri, P. (2008). Periodic solutions for planar autonomous systems with nonsmooth periodic perturbations. Journal of Mathematical Analysis and Applications, 338(2), 1401-1417. doi:10.1016/j.jmaa.2007.05.086 | es_ES |
dc.description.references | Malik, S. B., Rueda, L., & Thome, N. (2013). Further properties on the core partial order and other matrix partial orders. Linear and Multilinear Algebra, 62(12), 1629-1648. doi:10.1080/03081087.2013.839676 | es_ES |
dc.description.references | STYAN, G. P. H. (1970). Notes on the distribution of quadratic forms in singular normal variables. Biometrika, 57(3), 567-572. doi:10.1093/biomet/57.3.567 | es_ES |