- -

Power-law distribution of natural visibility graphs from reaction times series

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Power-law distribution of natural visibility graphs from reaction times series

Show simple item record

Files in this item

dc.contributor.author Mira-Iglesias, Ainara es_ES
dc.contributor.author Navarro Pardo, Esperanza es_ES
dc.contributor.author Conejero, J. Alberto es_ES
dc.date.accessioned 2021-02-06T04:33:04Z
dc.date.available 2021-02-06T04:33:04Z
dc.date.issued 2019-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160810
dc.description.abstract [EN] In this study, we analyze the response times of students to yes/no decision tasks from the perspective of network science. We analyze the properties of the natural visibility graphs (NVG) associated with their reaction time series. We observe that the degree distribution of these graphs usually fits a power-law distribution p(x)=x>o. We study the range in which parameter occurs and the changes of this exponent with respect to the age and gender of the students. In addition to this, we also study the links between the parameter and the parameters of the ex-Gaussian distribution that best fit the response times for each subject. es_ES
dc.description.sponsorship JAC was partial funded by MEC, grant number MTM2016-75963-P. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Symmetry (Basel) es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Reaction times es_ES
dc.subject Natural visibility graph (NVG) es_ES
dc.subject Ex-Gaussian es_ES
dc.subject Power-law es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Power-law distribution of natural visibility graphs from reaction times series es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/sym11040563 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-75963-P/ES/DINAMICA DE OPERADORES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Mira-Iglesias, A.; Navarro Pardo, E.; Conejero, JA. (2019). Power-law distribution of natural visibility graphs from reaction times series. Symmetry (Basel). 11(4):1-18. https://doi.org/10.3390/sym11040563 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/sym11040563 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2073-8994 es_ES
dc.relation.pasarela S\392377 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Hart, H., Radua, J., Nakao, T., Mataix-Cols, D., & Rubia, K. (2013). Meta-analysis of Functional Magnetic Resonance Imaging Studies of Inhibition and Attention in Attention-deficit/Hyperactivity Disorder. JAMA Psychiatry, 70(2), 185. doi:10.1001/jamapsychiatry.2013.277 es_ES
dc.description.references Ponsford, J., & Kinsella, G. (1991). The use of a rating scale of attentional behaviour. Neuropsychological Rehabilitation, 1(4), 241-257. doi:10.1080/09602019108402257 es_ES
dc.description.references Forster, K. I., & Forster, J. C. (2003). DMDX: A Windows display program with millisecond accuracy. Behavior Research Methods, Instruments, & Computers, 35(1), 116-124. doi:10.3758/bf03195503 es_ES
dc.description.references Mathôt, S., Schreij, D., & Theeuwes, J. (2011). OpenSesame: An open-source, graphical experiment builder for the social sciences. Behavior Research Methods, 44(2), 314-324. doi:10.3758/s13428-011-0168-7 es_ES
dc.description.references Boyle, C. A., Boulet, S., Schieve, L. A., Cohen, R. A., Blumberg, S. J., Yeargin-Allsopp, M., … Kogan, M. D. (2011). Trends in the Prevalence of Developmental Disabilities in US Children, 1997-2008. PEDIATRICS, 127(6), 1034-1042. doi:10.1542/peds.2010-2989 es_ES
dc.description.references Thomas, R., Sanders, S., Doust, J., Beller, E., & Glasziou, P. (2015). Prevalence of Attention-Deficit/Hyperactivity Disorder: A Systematic Review and Meta-analysis. Pediatrics, 135(4), e994-e1001. doi:10.1542/peds.2014-3482 es_ES
dc.description.references Willcutt, E. G., Nigg, J. T., Pennington, B. F., Solanto, M. V., Rohde, L. A., Tannock, R., … Lahey, B. B. (2012). Validity of DSM-IV attention deficit/hyperactivity disorder symptom dimensions and subtypes. Journal of Abnormal Psychology, 121(4), 991-1010. doi:10.1037/a0027347 es_ES
dc.description.references Visser, S. N., Danielson, M. L., Bitsko, R. H., Holbrook, J. R., Kogan, M. D., Ghandour, R. M., … Blumberg, S. J. (2014). Trends in the Parent-Report of Health Care Provider-Diagnosed and Medicated Attention-Deficit/Hyperactivity Disorder: United States, 2003–2011. Journal of the American Academy of Child & Adolescent Psychiatry, 53(1), 34-46.e2. doi:10.1016/j.jaac.2013.09.001 es_ES
dc.description.references Merritt, P., Hirshman, E., Wharton, W., Stangl, B., Devlin, J., & Lenz, A. (2007). Evidence for gender differences in visual selective attention. Personality and Individual Differences, 43(3), 597-609. doi:10.1016/j.paid.2007.01.016 es_ES
dc.description.references Dye, M. W. G., & Bavelier, D. (2010). Differential development of visual attention skills in school-age children. Vision Research, 50(4), 452-459. doi:10.1016/j.visres.2009.10.010 es_ES
dc.description.references VAQUERO, E., CARDOSO, M. J., VÁZQUE, M., & GÓMEZ, C. M. (2004). GENDER DIFFERENCES IN EVENT-RELATED POTENTIALS DURING VISUAL-SPATIAL ATTENTION. International Journal of Neuroscience, 114(4), 541-557. doi:10.1080/00207450490422056 es_ES
dc.description.references HALPERIN, J. M., WOLF, L. E., PASCUALVACA, D. M., NEWCORN, J. H., HEALEY, J. M., O’BRIEN, J. D., … YOUNG, J. G. (1988). Differential Assessment of Attention and Impulsivity in Children. Journal of the American Academy of Child & Adolescent Psychiatry, 27(3), 326-329. doi:10.1097/00004583-198805000-00010 es_ES
dc.description.references Schatz, A. M., Ballantyne, A. O., & Trauner, D. A. (2001). Sensitivity and Specificity of a Computerized Test of Attention in the Diagnosis of Attention-Deficit/Hyperactivity Disorder. Assessment, 8(4), 357-365. doi:10.1177/107319110100800401 es_ES
dc.description.references Rucklidge, J. J. (2010). Gender Differences in Attention-Deficit/Hyperactivity Disorder. Psychiatric Clinics of North America, 33(2), 357-373. doi:10.1016/j.psc.2010.01.006 es_ES
dc.description.references Faraone, S. V., Asherson, P., Banaschewski, T., Biederman, J., Buitelaar, J. K., Ramos-Quiroga, J. A., … Franke, B. (2015). Attention-deficit/hyperactivity disorder. Nature Reviews Disease Primers, 1(1). doi:10.1038/nrdp.2015.20 es_ES
dc.description.references Polanczyk, G., de Lima, M. S., Horta, B. L., Biederman, J., & Rohde, L. A. (2007). The Worldwide Prevalence of ADHD: A Systematic Review and Metaregression Analysis. American Journal of Psychiatry, 164(6), 942-948. doi:10.1176/ajp.2007.164.6.942 es_ES
dc.description.references GAUB, M., & CARLSON, C. L. (1997). Gender Differences in ADHD: A Meta-Analysis and Critical Review. Journal of the American Academy of Child & Adolescent Psychiatry, 36(8), 1036-1045. doi:10.1097/00004583-199708000-00011 es_ES
dc.description.references Gershon, J., & Gershon, J. (2002). A Meta-Analytic Review of Gender Differences in ADHD. Journal of Attention Disorders, 5(3), 143-154. doi:10.1177/108705470200500302 es_ES
dc.description.references Arnett, A. B., Pennington, B. F., Willcutt, E. G., DeFries, J. C., & Olson, R. K. (2014). Sex differences in ADHD symptom severity. Journal of Child Psychology and Psychiatry, 56(6), 632-639. doi:10.1111/jcpp.12337 es_ES
dc.description.references Byrnes, J. P., Miller, D. C., & Schafer, W. D. (1999). Gender differences in risk taking: A meta-analysis. Psychological Bulletin, 125(3), 367-383. doi:10.1037/0033-2909.125.3.367 es_ES
dc.description.references Gneezy, U., Niederle, M., & Rustichini, A. (2003). Performance in Competitive Environments: Gender Differences. The Quarterly Journal of Economics, 118(3), 1049-1074. doi:10.1162/00335530360698496 es_ES
dc.description.references Niederle, M., & Vesterlund, L. (2007). Do Women Shy Away From Competition? Do Men Compete Too Much? The Quarterly Journal of Economics, 122(3), 1067-1101. doi:10.1162/qjec.122.3.1067 es_ES
dc.description.references Pomerantz, E. M., Altermatt, E. R., & Saxon, J. L. (2002). Making the grade but feeling distressed: Gender differences in academic performance and internal distress. Journal of Educational Psychology, 94(2), 396-404. doi:10.1037/0022-0663.94.2.396 es_ES
dc.description.references Balota, D. A., & Yap, M. J. (2011). Moving Beyond the Mean in Studies of Mental Chronometry. Current Directions in Psychological Science, 20(3), 160-166. doi:10.1177/0963721411408885 es_ES
dc.description.references Ratcliff, R., & Murdock, B. B. (1976). Retrieval processes in recognition memory. Psychological Review, 83(3), 190-214. doi:10.1037/0033-295x.83.3.190 es_ES
dc.description.references Lacouture, Y., & Cousineau, D. (2008). How to use MATLAB to fit the ex-Gaussian and other probability functions to a distribution of response times. Tutorials in Quantitative Methods for Psychology, 4(1), 35-45. doi:10.20982/tqmp.04.1.p035 es_ES
dc.description.references Conners, C. K., Epstein, J. N., Angold, A., & Klaric, J. (2003). Journal of Abnormal Child Psychology, 31(5), 555-562. doi:10.1023/a:1025457300409 es_ES
dc.description.references Buzy, W. M., Medoff, D. R., & Schweitzer, J. B. (2009). Intra-Individual Variability Among Children with ADHD on a Working Memory Task: An Ex-Gaussian Approach. Child Neuropsychology, 15(5), 441-459. doi:10.1080/09297040802646991 es_ES
dc.description.references Gmehlin, D., Fuermaier, A. B. M., Walther, S., Debelak, R., Rentrop, M., Westermann, C., … Aschenbrenner, S. (2014). Intraindividual Variability in Inhibitory Function in Adults with ADHD – An Ex-Gaussian Approach. PLoS ONE, 9(12), e112298. doi:10.1371/journal.pone.0112298 es_ES
dc.description.references Hwang Gu, S.-L., Gau, S. S.-F., Tzang, S.-W., & Hsu, W.-Y. (2013). The ex-Gaussian distribution of reaction times in adolescents with attention-deficit/hyperactivity disorder. Research in Developmental Disabilities, 34(11), 3709-3719. doi:10.1016/j.ridd.2013.07.025 es_ES
dc.description.references Moret-Tatay, C., Leth-Steensen, C., Irigaray, T. Q., Argimon, I. I. L., Gamermann, D., Abad-Tortosa, D., … Fernández de Córdoba Castellá, P. (2016). The Effect of Corrective Feedback on Performance in Basic Cognitive Tasks: An Analysis of RT Components. Psychologica Belgica, 56(4), 370-381. doi:10.5334/pb.240 es_ES
dc.description.references Moret-Tatay, C., Moreno-Cid, A., Argimon, I. I. de L., Quarti Irigaray, T., Szczerbinski, M., Murphy, M., … Fernández de Córdoba Castellá, P. (2014). The effects of age and emotional valence on recognition memory: An ex-Gaussian components analysis. Scandinavian Journal of Psychology, 55(5), 420-426. doi:10.1111/sjop.12136 es_ES
dc.description.references Barabási, A.-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509-512. doi:10.1126/science.286.5439.509 es_ES
dc.description.references Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47-97. doi:10.1103/revmodphys.74.47 es_ES
dc.description.references Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power-Law Distributions in Empirical Data. SIAM Review, 51(4), 661-703. doi:10.1137/070710111 es_ES
dc.description.references Mira-Iglesias, A., Alberto Conejero, J., & Navarro-Pardo, E. (2016). Natural visibility graphs for diagnosing attention deficit hyperactivity disorder (ADHD). Electronic Notes in Discrete Mathematics, 54, 337-342. doi:10.1016/j.endm.2016.09.058 es_ES
dc.description.references Rueda, M. R., Rothbart, M. K., McCandliss, B. D., Saccomanno, L., & Posner, M. I. (2005). From The Cover: Training, maturation, and genetic influences on the development of executive attention. Proceedings of the National Academy of Sciences, 102(41), 14931-14936. doi:10.1073/pnas.0506897102 es_ES
dc.description.references Lacasa, L., Luque, B., Ballesteros, F., Luque, J., & Nuño, J. C. (2008). From time series to complex networks: The visibility graph. Proceedings of the National Academy of Sciences, 105(13), 4972-4975. doi:10.1073/pnas.0709247105 es_ES
dc.description.references Qian, M.-C., Jiang, Z.-Q., & Zhou, W.-X. (2010). Universal and nonuniversal allometric scaling behaviors in the visibility graphs of world stock market indices. Journal of Physics A: Mathematical and Theoretical, 43(33), 335002. doi:10.1088/1751-8113/43/33/335002 es_ES
dc.description.references Sun, M., Wang, Y., & Gao, C. (2016). Visibility graph network analysis of natural gas price: The case of North American market. Physica A: Statistical Mechanics and its Applications, 462, 1-11. doi:10.1016/j.physa.2016.06.051 es_ES
dc.description.references Guzmán-Vargas, L., Obregón-Quintana, B., Aguilar-Velázquez, D., Hernández-Pérez, R., & Liebovitch, L. (2015). Word-Length Correlations and Memory in Large Texts: A Visibility Network Analysis. Entropy, 17(12), 7798-7810. doi:10.3390/e17117798 es_ES
dc.description.references Elsner, J. B., Jagger, T. H., & Fogarty, E. A. (2009). Visibility network of United States hurricanes. Geophysical Research Letters, 36(16). doi:10.1029/2009gl039129 es_ES
dc.description.references Aguilar-San Juan, B., & Guzmán-Vargas, L. (2013). Earthquake magnitude time series: scaling behavior of visibility networks. The European Physical Journal B, 86(11). doi:10.1140/epjb/e2013-40762-2 es_ES
dc.description.references Telesca, L., & Lovallo, M. (2012). Analysis of seismic sequences by using the method of visibility graph. EPL (Europhysics Letters), 97(5), 50002. doi:10.1209/0295-5075/97/50002 es_ES
dc.description.references Ahmadlou, M., Adeli, H., & Adeli, A. (2010). New diagnostic EEG markers of the Alzheimer’s disease using visibility graph. Journal of Neural Transmission, 117(9), 1099-1109. doi:10.1007/s00702-010-0450-3 es_ES
dc.description.references Ahmadlou, M., Adeli, H., & Adeli, A. (2012). Improved visibility graph fractality with application for the diagnosis of Autism Spectrum Disorder. Physica A: Statistical Mechanics and its Applications, 391(20), 4720-4726. doi:10.1016/j.physa.2012.04.025 es_ES
dc.description.references Lehnertz, K., Ansmann, G., Bialonski, S., Dickten, H., Geier, C., & Porz, S. (2014). Evolving networks in the human epileptic brain. Physica D: Nonlinear Phenomena, 267, 7-15. doi:10.1016/j.physd.2013.06.009 es_ES
dc.description.references Zhu, G., Li, Y., & Wen, P. (2014). Analysis and Classification of Sleep Stages Based on Difference Visibility Graphs From a Single-Channel EEG Signal. IEEE Journal of Biomedical and Health Informatics, 18(6), 1813-1821. doi:10.1109/jbhi.2014.2303991 es_ES
dc.description.references Lacasa, L., Luque, B., Luque, J., & Nuño, J. C. (2009). The visibility graph: A new method for estimating the Hurst exponent of fractional Brownian motion. EPL (Europhysics Letters), 86(3), 30001. doi:10.1209/0295-5075/86/30001 es_ES
dc.description.references Newman, M. E. J. (2003). The Structure and Function of Complex Networks. SIAM Review, 45(2), 167-256. doi:10.1137/s003614450342480 es_ES
dc.description.references Dorogovtsev, S. N., & Mendes, J. F. F. (2002). Evolution of networks. Advances in Physics, 51(4), 1079-1187. doi:10.1080/00018730110112519 es_ES
dc.description.references Song, C., Havlin, S., & Makse, H. A. (2005). Self-similarity of complex networks. Nature, 433(7024), 392-395. doi:10.1038/nature03248 es_ES
dc.description.references Jian, F., & Dandan, S. (2016). Complex Network Theory and Its Application Research on P2P Networks. Applied Mathematics and Nonlinear Sciences, 1(1), 45-52. doi:10.21042/amns.2016.1.00004 es_ES
dc.description.references Kofler, M. J., Rapport, M. D., Sarver, D. E., Raiker, J. S., Orban, S. A., Friedman, L. M., & Kolomeyer, E. G. (2013). Reaction time variability in ADHD: A meta-analytic review of 319 studies. Clinical Psychology Review, 33(6), 795-811. doi:10.1016/j.cpr.2013.06.001 es_ES
dc.description.references Moret-Tatay, C., Lemus-Zúñiga, L.-G., Tortosa, D. A., Gamermann, D., Vázquez-martínez, A., Navarro-Pardo, E., & Conejero, J. A. (2017). Age slowing down in detection and visual discrimination under varying presentation times. Scandinavian Journal of Psychology, 58(4), 304-311. doi:10.1111/sjop.12372 es_ES
dc.description.references Sternberg, S., & Backus, B. T. (2015). Sequential processes and the shapes of reaction time distributions. Psychological Review, 122(4), 830-837. doi:10.1037/a0039658 es_ES
dc.description.references Vaurio, R. G., Simmonds, D. J., & Mostofsky, S. H. (2009). Increased intra-individual reaction time variability in attention-deficit/hyperactivity disorder across response inhibition tasks with different cognitive demands. Neuropsychologia, 47(12), 2389-2396. doi:10.1016/j.neuropsychologia.2009.01.022 es_ES
dc.description.references Luque, B., Lacasa, L., Ballesteros, F. J., & Robledo, A. (2011). Feigenbaum Graphs: A Complex Network Perspective of Chaos. PLoS ONE, 6(9), e22411. doi:10.1371/journal.pone.0022411 es_ES
dc.description.references Iglesias Martínez, M., García-Gomez, J., Sáez, C., Fernández de Córdoba, P., & Alberto Conejero, J. (2018). Feature Extraction and Similarity of Movement Detection during Sleep, Based on Higher Order Spectra and Entropy of the Actigraphy Signal: Results of the Hispanic Community Health Study/Study of Latinos. Sensors, 18(12), 4310. doi:10.3390/s18124310 es_ES
dc.description.references Murua, A., & Sanz-Serna, J. M. (2016). Vibrational resonance: a study with high-order word-series averaging. Applied Mathematics and Nonlinear Sciences, 1(1), 239-246. doi:10.21042/amns.2016.1.00018 es_ES
dc.subject.ods 04.- Garantizar una educación de calidad inclusiva y equitativa, y promover las oportunidades de aprendizaje permanente para todos es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


This item appears in the following Collection(s)

Show simple item record