- -

Coherency-Broken Bragg Filters: Overcoming On-Chip Rejection Limitations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Coherency-Broken Bragg Filters: Overcoming On-Chip Rejection Limitations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Oser, Dorian es_ES
dc.contributor.author Mazeas, Florent es_ES
dc.contributor.author Le Roux, Xavier es_ES
dc.contributor.author Pérez-Galacho, Diego es_ES
dc.contributor.author Alibart, Olivier es_ES
dc.contributor.author Tanzilli, Sébastien es_ES
dc.contributor.author Labonté, Laurent es_ES
dc.contributor.author Marris-Morini, Delphine es_ES
dc.contributor.author Vivien, Laurent es_ES
dc.contributor.author Cassan, Éric es_ES
dc.contributor.author Alonso-Ramos, Carlos es_ES
dc.date.accessioned 2021-02-06T04:33:25Z
dc.date.available 2021-02-06T04:33:25Z
dc.date.issued 2019-08 es_ES
dc.identifier.issn 1863-8880 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160820
dc.description.abstract [EN] Selective optical filters with high rejection levels are of fundamental importance for a wide range of advanced photonic circuits. However, the implementation of high-rejection on-chip optical filters is seriously hampered by phase errors arising from fabrication imperfections. Due to coherent interactions, unwanted phase-shifts result in detrimental destructive interferences that distort the filter response, whatever the chosen strategy (resonators, interferometers, Bragg filters, etc.). State-of-the-art high-rejection filters partially circumvent the sensitivity to phase errors by means of active tuning, complicating device fabrication and operation. Here, a new approach based on coherency-broken Bragg filters is proposed to overcome this fundamental limitation. Non-coherent interaction among modal-engineered waveguide Bragg gratings separated by single-mode waveguides is exploited to yield effective cascading, even in the presence of phase errors. This technologically independent approach allows seamless combination of filter stages with moderate performance free of active control, providing a dramatic increase of on-chip rejection. Based on this concept, on-chip non-coherent cascading of Si Bragg filters is experimentally demonstrated, achieving a light rejection exceeding 80 dB, the largest value reported for an all-passive silicon filter. es_ES
dc.description.sponsorship This work has been partially funded by the Agence Nationale de la Recherche (ANR-SITQOM-15-CE24-0005, ANR-MIRSPEC-17-CE09-0041) and the H2020 European Research Council (ERC) (ERC POPSTAR 647342). The fabrication of the device was performed at the Plateforme de Micro-Nano-Technologie/C2N, which is partially funded by the Conseil Général de l'Essonne. This work was partly supported by the French RENATECH network. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Laser & Photonics Review es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bragg gratings es_ES
dc.subject Optical filters es_ES
dc.subject Pump-rejection es_ES
dc.subject Silicon photonics es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Coherency-Broken Bragg Filters: Overcoming On-Chip Rejection Limitations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/lpor.201800226 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/647342/EU/Low power consumption silicon optoelectronics based on strain and refractive index engineering/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-15-CE24-0005/FR/Silicon photonics for quantum optics & communication/SITQOM/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-17-CE09-0041/FR/Mid-IR absorption spectrometer based on subwavelength silicon photonic nanostructures/MIR-Spec/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Oser, D.; Mazeas, F.; Le Roux, X.; Pérez-Galacho, D.; Alibart, O.; Tanzilli, S.; Labonté, L.... (2019). Coherency-Broken Bragg Filters: Overcoming On-Chip Rejection Limitations. Laser & Photonics Review. 13(8):1-8. https://doi.org/10.1002/lpor.201800226 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/lpor.201800226 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 8 es_ES
dc.relation.pasarela S\406581 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.description.references Fernández Gavela, A., Grajales García, D., Ramirez, J., & Lechuga, L. (2016). Last Advances in Silicon-Based Optical Biosensors. Sensors, 16(3), 285. doi:10.3390/s16030285 es_ES
dc.description.references Knill, E., Laflamme, R., & Milburn, G. J. (2001). A scheme for efficient quantum computation with linear optics. Nature, 409(6816), 46-52. doi:10.1038/35051009 es_ES
dc.description.references Cheben, P., Schmid, J. H., Wang, S., Xu, D.-X., Vachon, M., Janz, S., … Picard, M.-J. (2015). Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency. Optics Express, 23(17), 22553. doi:10.1364/oe.23.022553 es_ES
dc.description.references Ziebell, M., Marris-Morini, D., Rasigade, G., Fédéli, J.-M., Crozat, P., Cassan, E., … Vivien, L. (2012). 40 Gbit/s low-loss silicon optical modulator based on a pipin diode. Optics Express, 20(10), 10591. doi:10.1364/oe.20.010591 es_ES
dc.description.references Vivien, L., Polzer, A., Marris-Morini, D., Osmond, J., Hartmann, J. M., Crozat, P., … Fédéli, J. M. (2012). Zero-bias 40Gbit/s germanium waveguide photodetector on silicon. Optics Express, 20(2), 1096. doi:10.1364/oe.20.001096 es_ES
dc.description.references Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., & Diamanti, E. (2013). Experimental demonstration of long-distance continuous-variable quantum key distribution. Nature Photonics, 7(5), 378-381. doi:10.1038/nphoton.2013.63 es_ES
dc.description.references Azzini, S., Grassani, D., Strain, M. J., Sorel, M., Helt, L. G., Sipe, J. E., … Bajoni, D. (2012). Ultra-low power generation of twin photons in a compact silicon ring resonator. Optics Express, 20(21), 23100. doi:10.1364/oe.20.023100 es_ES
dc.description.references Jiang, W. C., Lu, X., Zhang, J., Painter, O., & Lin, Q. (2015). Silicon-chip source of bright photon pairs. Optics Express, 23(16), 20884. doi:10.1364/oe.23.020884 es_ES
dc.description.references Grassani, D., Azzini, S., Liscidini, M., Galli, M., Strain, M. J., Sorel, M., … Bajoni, D. (2015). Micrometer-scale integrated silicon source of time-energy entangled photons. Optica, 2(2), 88. doi:10.1364/optica.2.000088 es_ES
dc.description.references Piekarek, M., Bonneau, D., Miki, S., Yamashita, T., Fujiwara, M., Sasaki, M., … Thompson, M. G. (2017). High-extinction ratio integrated photonic filters for silicon quantum photonics. Optics Letters, 42(4), 815. doi:10.1364/ol.42.000815 es_ES
dc.description.references Klitis, C., Cantarella, G., Strain, M. J., & Sorel, M. (2017). High-extinction-ratio TE/TM selective Bragg grating filters on silicon-on-insulator. Optics Letters, 42(15), 3040. doi:10.1364/ol.42.003040 es_ES
dc.description.references Xia, F., Rooks, M., Sekaric, L., & Vlasov, Y. (2007). Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects. Optics Express, 15(19), 11934. doi:10.1364/oe.15.011934 es_ES
dc.description.references Zou, Z., Zhou, L., Wang, M., Wu, K., & Chen, J. (2016). Tunable spiral Bragg gratings in 60-nm-thick silicon-on-insulator strip waveguides. Optics Express, 24(12), 12831. doi:10.1364/oe.24.012831 es_ES
dc.description.references Lu, Z., Jhoja, J., Klein, J., Wang, X., Liu, A., Flueckiger, J., … Chrostowski, L. (2017). Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability. Optics Express, 25(9), 9712. doi:10.1364/oe.25.009712 es_ES
dc.description.references Vengsarkar, A. M., Lemaire, P. J., Judkins, J. B., Bhatia, V., Erdogan, T., & Sipe, J. E. (1996). Long-period fiber gratings as band-rejection filters. Journal of Lightwave Technology, 14(1), 58-65. doi:10.1109/50.476137 es_ES
dc.description.references Litchinitser, N. M., Eggleton, B. J., & Agrawal, G. P. (1998). Dispersion of cascaded fiber gratings in WDM lightwave systems. Journal of Lightwave Technology, 16(8), 1523-1529. doi:10.1109/50.704620 es_ES
dc.description.references Ong, J. R., Kumar, R., & Mookherjea, S. (2013). Ultra-High-Contrast and Tunable-Bandwidth Filter Using Cascaded High-Order Silicon Microring Filters. IEEE Photonics Technology Letters, 25(16), 1543-1546. doi:10.1109/lpt.2013.2267539 es_ES
dc.description.references Cooper, M. L., Gupta, G., Schneider, M. A., Green, W. M. J., Assefa, S., Xia, F., … Mookherjea, S. (2010). Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides. Optics Express, 18(25), 26505. doi:10.1364/oe.18.026505 es_ES
dc.description.references Y.Painchaud M.Poulin C.Latrasse M.‐J.Picard presented atInt. Conf. on Group IV Photonics IEEE San Diego CA USA August2012 pap. 13058915. es_ES
dc.description.references FDTD solutions Lumerical Solutions Inc. http://www.lumerical.com. es_ES
dc.description.references Yariv, A. (1973). Coupled-mode theory for guided-wave optics. IEEE Journal of Quantum Electronics, 9(9), 919-933. doi:10.1109/jqe.1973.1077767 es_ES
dc.description.references Wang, X., Wang, Y., Flueckiger, J., Bojko, R., Liu, A., Reid, A., … Chrostowski, L. (2014). Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings. Optics Letters, 39(19), 5519. doi:10.1364/ol.39.005519 es_ES
dc.description.references Qiu, H., Jiang, J., Yu, P., Dai, T., Yang, J., Yu, H., & Jiang, X. (2016). Silicon band-rejection and band-pass filter based on asymmetric Bragg sidewall gratings in a multimode waveguide. Optics Letters, 41(11), 2450. doi:10.1364/ol.41.002450 es_ES
dc.description.references Cheben, P., Halir, R., Schmid, J. H., Atwater, H. A., & Smith, D. R. (2018). Subwavelength integrated photonics. Nature, 560(7720), 565-572. doi:10.1038/s41586-018-0421-7 es_ES
dc.description.references Simard, A. D., Belhadj, N., Painchaud, Y., & LaRochelle, S. (2012). Apodized Silicon-on-Insulator Bragg Gratings. IEEE Photonics Technology Letters, 24(12), 1033-1035. doi:10.1109/lpt.2012.2194278 es_ES
dc.description.references Wang, X., Shi, W., Yun, H., Grist, S., Jaeger, N. A. F., & Chrostowski, L. (2012). Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process. Optics Express, 20(14), 15547. doi:10.1364/oe.20.015547 es_ES
dc.description.references Halir, R., Cheben, P., Janz, S., Xu, D.-X., Molina-Fernández, Í., & Wangüemert-Pérez, J. G. (2009). Waveguide grating coupler with subwavelength microstructures. Optics Letters, 34(9), 1408. doi:10.1364/ol.34.001408 es_ES
dc.description.references Benedikovic, D., Cheben, P., Schmid, J. H., Xu, D.-X., Lamontagne, B., Wang, S., … Dado, M. (2015). Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides. Optics Express, 23(17), 22628. doi:10.1364/oe.23.022628 es_ES
dc.description.references Zhang, Y., He, Y., Wu, J., Jiang, X., Liu, R., Qiu, C., … Su, Y. (2016). High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations. Optics Express, 24(6), 6586. doi:10.1364/oe.24.006586 es_ES
dc.description.references Cantarella, G., Klitis, C., Sorel, M., & Strain, M. J. (2017). Silicon photonic filters with high rejection of both TE and TM modes for on-chip four wave mixing applications. Optics Express, 25(17), 19711. doi:10.1364/oe.25.019711 es_ES
dc.description.references Qiu, H., Jiang, G., Hu, T., Shao, H., Yu, P., Yang, J., & Jiang, X. (2012). FSR-free add–drop filter based on silicon grating-assisted contradirectional couplers. Optics Letters, 38(1), 1. doi:10.1364/ol.38.000001 es_ES
dc.description.references Wang, J., He, S., & Dai, D. (2014). On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing. Laser & Photonics Reviews, 8(2), L18-L22. doi:10.1002/lpor.201300157 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem