- -

Periphyton and phytoplankton assessment in a shrimp nursery: signature pigments analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Periphyton and phytoplankton assessment in a shrimp nursery: signature pigments analysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Llario, F. es_ES
dc.contributor.author Rodilla, M. es_ES
dc.contributor.author Falco, S. es_ES
dc.contributor.author Escrivá, J. es_ES
dc.contributor.author Sebastiá-Frasquet, M.-T. es_ES
dc.date.accessioned 2021-02-06T04:33:27Z
dc.date.available 2021-02-06T04:33:27Z
dc.date.issued 2020-02 es_ES
dc.identifier.issn 1735-1472 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160821
dc.description.abstract [EN] Understanding microalgae composition is key for an improved aquaculture system management. The primary objective of this research was to estimate microalgae community structure in a Marsupenaeus japonicus nursery. The secondary objective was to analyze the environmental parameters (salinity, pH, dissolved oxygen, total dissolved ammonia, nitrites, nitrates and phosphates) and shrimp density effect on abundance, composition and development of microalgae in a shrimp nursery. Periphyton and phytoplankton composition and abundance were determined using HPLC signature pigment analysis coupled with CHEMTAX software. Environmental parameters were measured in the tanks with probes or in the laboratory following standard procedures of water quality analysis. A nonparametric repeated-measures ANOVA statistical analysis was done to test differences between treatments. Spearman rank correlation analyses were performed on environmental and biological variables with phytoplankton or periphyton groups in order to examine significant relationship. The results showed diatoms were significantly higher than any other groups in both phytoplankton and periphyton communities. Shrimp density effect on periphyton, phytoplankton composition and environmental parameters was minor. Nutrients played a key role on phytoplankton development, but had a minor effect on periphyton, which was more affected by colonization processes and other environmental variables. The analysis of signature pigments allowed to report the presence of previously undetected groups on periphyton, prasinophytes and prymnesiophytes, which are characterized by high nutritional value. This is especially important in nurseries because shrimp grazing on periphyton can increase post-larvae survival. es_ES
dc.description.sponsorship Financial support for this research was provided by Conselleria d'Educacio, Investigacio, Cultura i Esport of the Generalitat Valenciana, through the program VALi+D, file Number ACIF/2014/244. The authors want to thank the anonymous reviewer for the accurate revision and useful comments which helped to improve the original manuscript. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof International Journal of Environmental Science and Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject CHEMTAX es_ES
dc.subject Marsupenaeus japonicus es_ES
dc.subject Microalgae es_ES
dc.subject High-performance liquid chromatography es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Periphyton and phytoplankton assessment in a shrimp nursery: signature pigments analysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s13762-019-02515-z es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2014%2F244/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Llario, F.; Rodilla, M.; Falco, S.; Escrivá, J.; Sebastiá-Frasquet, M. (2020). Periphyton and phytoplankton assessment in a shrimp nursery: signature pigments analysis. International Journal of Environmental Science and Technology. 17(2):857-868. https://doi.org/10.1007/s13762-019-02515-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s13762-019-02515-z es_ES
dc.description.upvformatpinicio 857 es_ES
dc.description.upvformatpfin 868 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\361022 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Ács É, Kiss KT, Szabó-Taylor K, Makk J (2000) Short-term colonization sequence of periphyton on glass slides in a large river (River Danube, near Budapest). Acta Bot Croat 100:135–156 es_ES
dc.description.references Alonso-Rodríguez R, Páez-Osuna F (2003) Nutrients, phytoplankton and harmful algal blooms in shrimp ponds: a review with special reference to the situation in the Gulf of California. Aquaculture 219(1–4):317–336. https://doi.org/10.1016/s0044-8486(02)00509-4 es_ES
dc.description.references Anand PS, Kumar S, Panigrahi A, Ghoshal TK, Dayal JS, Biswas G, Sundaray JK, De D, Ananda Raja R, Deo AD, Pillai SM, Ravichandran P (2013) Effects of C: N ratio and substrate integration on periphyton biomass, microbial dynamics and growth of Penaeus monodon juveniles. Aquacult Int 21:511–524. https://doi.org/10.1007/s10499-012-9585-6 es_ES
dc.description.references Azim ME, Wahab MA, Van Dam AA, Beveridge MC, Verdegem MCJ (2001) The potential of periphyton-based culture of two Indian major carps, rohu Labeo rohita (Hamilton) and gonia Labeo gonius (Linnaeus). Aquac Res 32:209–216. https://doi.org/10.1046/j.1365-2109.2001.00549.x es_ES
dc.description.references Azim ME, Verdegem MC, Van Dam AA, Beveridge MC (2005) Periphyton: ecology, exploitation and management. CABI, Cambridge es_ES
dc.description.references Ballester ELC, Wasielesky W, Cavalli RO, Abreu PC (2007) Nursery of the pink shrimp Farfantepenaeus paulensis in cages with artificial substrates: biofilm composition and shrimp performance. Aquaculture 269:355–362. https://doi.org/10.1016/j.aquaculture.2007.04.003 es_ES
dc.description.references Barbieri RC, Ostrensky A (2001) Camarões Marinhos: Reprodução. Maturação e Larvicultura. Aprenda Fácil, Voçosa es_ES
dc.description.references Baumgarten MGZ, Wallner-Kersanach M, Niencheski LFH (2010) Manual de análises em oceanografía química. Editora da FURG, Rio Grande es_ES
dc.description.references Benemann JR (1992) Microalgae aquaculture feeds. J Appl Phycol 4:233–245. https://doi.org/10.1007/bf02161209 es_ES
dc.description.references Betancur-González EM, Ruales CAD, Gutiérrez LA (2016) Diversidad del perifiton presente en un sistema de producción de tilapia en biofloc. Revista Lasallista de Investigación 13:163–177. https://doi.org/10.22507/rli.v13n2a15 es_ES
dc.description.references Blachier P (1998) Guide techniques du CREAA: l’élevage de la Crevette Imppériale. Le Château d’Oléron, France es_ES
dc.description.references Brake SS, Hasiotis ST (2012) Potential metal attenuation by eukaryotic-dominated communities in acid mine drainage at the green valley coal mine site, Indiana. In: Comer J (ed) Effects of abandoned mine land reclamation on ground and surface water quality in Indiana, 1st edn. Indiana geological survey special report 72, Bloomington, Indiana, pp 285–300 es_ES
dc.description.references Brito LO, Santos IGS, Abreu JL, Araújo MT, Severi W, Gàlvez AO (2016) Effect of the addition of diatoms (Navicula spp.) and rotifers (Brachionus plicatilis) on water quality and growth of the Litopenaeus vannamei postlarvae reared in a biofloc system. Aquac Res 47:3990–3997. https://doi.org/10.1111/are.12849 es_ES
dc.description.references Burford M (1997) Phytoplankton dynamics in shrimp ponds. Aquac Res 28:351–360. https://doi.org/10.1111/j.1365-2109.1997.tb01052.x es_ES
dc.description.references Casé M, Leça EE, Leitão SN, Sant EE, Schwamborn R, de Moraes Junior AT (2008) Plankton community as an indicator of water quality in tropical shrimp culture ponds. Mar Pollut Bull 56:1343–1352. https://doi.org/10.1016/j.marpolbul.2008.02.008 es_ES
dc.description.references Chen YC (2001) Immobilized microalga Scenedesmus quadricauda (Chlorophyta, Chlorococcales) for long-term storage and for application for water quality control in fish culture. Aquaculture 195:71–80. https://doi.org/10.1016/s0044-8486(00)00540-8 es_ES
dc.description.references Choudhary P, Malik A, Pant KK (2017) Algal biofilm systems: an answer to algal biofuel dilemma. Algal Biofuels. https://doi.org/10.1007/978-3-319-51010-1_4 es_ES
dc.description.references Claquin P, Probert I, Lefebvre S, Veron B (2008) Effects of temperature on photosynthetic parameters and TEP production in eight species of marine microalgae. Aquat Microb Ecol 51:1–11. https://doi.org/10.3354/ame01187 es_ES
dc.description.references Coman GJ, Crocos PJ, Preston NP, Fielder D (2004) The effects of density on the growth and survival of different families of juvenile Penaeus japonicus (Bate). Aquaculture 229:215–223. https://doi.org/10.1016/S0044-8486(03)00402-2 es_ES
dc.description.references Correia ES, Wilkenfeld JS, Morris TC, Wei L, Prangnell DI, Samocha TM (2014) Intensive nursery production of the Pacific white shrimp Litopenaeus vannamei using two commercial feeds with high and low protein content in a biofloc-dominated system. Aquacult Eng 59:48–54. https://doi.org/10.1016/j.aquaeng.2014.02.002 es_ES
dc.description.references Crab R, Defoirdt T, Bossier P, Verstraete W (2012) Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture 356:351–356. https://doi.org/10.1016/j.aquaculture.2012.04.046 es_ES
dc.description.references Cremen MCM, Martinez-Goss MR, Corre VL, Azanza RV (2007) Phytoplankton bloom in commercial shrimp ponds using green-water technology. J Appl Phycol 19:615–624. https://doi.org/10.1007/s10811-007-9210-7 es_ES
dc.description.references Decamp O, Conquest L, Cody J, Forster I, Tacon AG (2007) Effect of shrimp stocking density on size-fractionated phytoplankton and ecological groups of ciliated protozoa within zero-water exchange shrimp culture systems. J World Aquac Soc 38:395–406. https://doi.org/10.1111/j.1749-7345.2007.00111.x es_ES
dc.description.references Devilla RA, Brown MT, Donkin M, Readman JW (2005) The effects of a PSII inhibitor on phytoplankton community structure as assessed by HPLC pigment analyses, microscopy and flow cytometry. Aquat Toxicol 71:25–38. https://doi.org/10.1016/j.aquatox.2004.10.002 es_ES
dc.description.references Ebeling J, Timmons M, Bisogni J (2006) Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture 257:346–358. https://doi.org/10.1016/j.aquaculture.2006.03.019 es_ES
dc.description.references Eldridge RJ, Hill DRA, Gladman BR (2012) A comparative study of the coagulation behaviour of marine microalgae. J Appl Phycol 24:1667–1679. https://doi.org/10.1007/s10811-012-9830-4 es_ES
dc.description.references Gaona CAP, Poersch LH, Krummenauer D, Foes GK, Wasielesky WJ (2011) The effect of solids removal on water quality, growth and survival of Litopenaeus vannamei in a biofloc technology culture system. Int J Recirc Aquacul. https://doi.org/10.21061/ijra.v12i1.1354 es_ES
dc.description.references Gocke K, Meyerhöfer M, Mancera-Pineda JE, Vidal LA (2003) Phytoplankton composition in coastal lagoons of different trophic status in northern Colombia determined by microscope and HPLC-pigment analysis. Boletín de Investigaciones Marinas y Costeras-INVEMAR 32:263–278. https://doi.org/10.25268/bimc.invemar.2003.32.0.270 es_ES
dc.description.references Grasshoff K (1976) Methods of seawater analysis. Wiley, Weinheim es_ES
dc.description.references Guerrero-Galván SR, Páez-Osuna F, Ruiz-Fernández AC, Espinoza-Angulo R (1998) Seasonal variation in the water quality and chlorophyll a of semi-intensive shrimp ponds in a subtropical environment. Hydrobiologia 391:33–45. https://doi.org/10.1023/A:100359062 es_ES
dc.description.references Hagerthey SE, William-Louda J, Mongkronsri P (2006) Evaluation of pigment extraction methods and a recommended protocol for periphyton chlorophyll a determination and chemotaxonomic assessment. J Phycol 42:1125–1136. https://doi.org/10.1111/j.1529-8817.2006.00257.x es_ES
dc.description.references Hanlon ARM, Bellinger B, Haynes K, Xiao G, Hofmann TA, Gretz MR, Ball AS, Osborn AM, Underwood GJC (2006) Dynamics of extracellular polymeric substance (EPS) production and loss in an estuarine, diatom-dominated, microalgal biofilm over a tidal emersio—immersion period. Limnol Oceanogr 51:79–93. https://doi.org/10.4319/lo.2006.51.1.0079 es_ES
dc.description.references Harris GP (2012) Phytoplankton ecology: structure, function and fluctuation. Springer, Berlin. https://doi.org/10.1007/978-94-009-4081-9 es_ES
dc.description.references Hewitt DR, Duncan PF (2001) Effect of high water temperature on the survival. moulting and food consumption of Penaeus (Marsupenaeus) japonicus (Bate. 1888). Aquac Res 32:305–313. https://doi.org/10.1046/j.1365-2109.2001.00560.x es_ES
dc.description.references Hooker S, Firestone E, Claustre H, Ras J (2001) The first SeaWiFS HPLC analysis round-robin experiment (SeaHARRE-1). https://ntrs.nasa.gov/search.jsp?R=20010072242 . Accessed 15 Oct 2017 es_ES
dc.description.references Jaime-Ceballos BJ, Hernández-Llamas A, Garcia-Galano T, Villarreal H (2006) Substitution of Chaetoceros muelleri by Spirulina platensis meal in diets for Litopenaeus schmitti larvae. Aquaculture 260:215–220. https://doi.org/10.1016/j.aquaculture.2006.06.002 es_ES
dc.description.references Jatobá A, Silva BC, Silva JS, Vieira FD, Mouriño JL, Seiffert WQ, Toledo TM (2014) Protein levels for Litopenaeus vannamei in semi-intensive and biofloc systems. Aquaculture 432:365–371. https://doi.org/10.1016/j.aquaculture.2014.05.005 es_ES
dc.description.references Jiang T, Chen F, Yu Z, Lu L, Wang Z (2016) Size-dependent depletion and community disturbance of phytoplankton under intensive oyster mariculture based on HPLC pigment analysis in Daya Bay, South China Sea. Environ Pollut 219:804–814. https://doi.org/10.1016/j.envpol.2016.07.058 es_ES
dc.description.references Jöbgen A, Palm A, Melkonian M (2004) Phosphorus removal from eutrophic lakes using periphyton on submerged artificial substrata. Hydrobiologia 528:123–142. https://doi.org/10.1007/s10750-004-2337-5 es_ES
dc.description.references Kent M, Browdy CL, Leffler JW (2011) Consumption and digestion of suspended microbes by juvenile Pacific white shrimp Litopenaeus vannamei. Aquaculture 319:363–368. https://doi.org/10.1016/j.aquaculture.2011.06.048 es_ES
dc.description.references Khandeparker L, Hede N, Eswaran R, Usgaonkar A, Anil AC (2017) Microbial dynamics in a tropical monsoon influenced estuary: elucidation through field observations and microcosm experiments on biofilms. J Exp Mar Biol Ecol 497:86–98. https://doi.org/10.1016/j.jembe.2017.09.014 es_ES
dc.description.references Khatoon H, Yusoff F, Banerjee S, Shariff M, Bujang JS (2007a) Formation of periphyton biofilm and subsequent biofouling on different substrates in nutrient enriched brackishwater shrimp ponds. Aquaculture 273:470–477. https://doi.org/10.1016/j.aquaculture.2007.10.040 es_ES
dc.description.references Khatoon H, Yusoff F, Banerjee S, Shariff M, Mohamed S (2007b) Use of periphytic cyanobacterium and mixed diatoms coated substrate for improving water quality. survival and growth of Penaeus monodon Fabricius postlarvae. Aquaculture 271:196–205. https://doi.org/10.1016/j.aquaculture.2007.06.036 es_ES
dc.description.references Krummenauer D, Peixoto S, Cavalli RO, Poersch LH, Wasielesky W (2011) Superintensive culture of white shrimp, Litopenaeus vannamei, in a biofloc technology system in southern Brazil at different stocking densities. J World Aquac Soc 42:726–733. https://doi.org/10.1111/j.1749-7345.2011.00507.x es_ES
dc.description.references Krummenauer D, Poersch L, Romano LA, Lara GR, Encarnação P, Wasielesky W (2014) The effect of probiotics in a Litopenaeus vannamei biofloc culture system infected with Vibrio parahaemolyticus. J Appl Aquac 26:370–379. https://doi.org/10.1080/10454438.2014.965575 es_ES
dc.description.references Latasa M (2007) Improving estimations of phytoplankton class abundances using CHEMTAX. Mar Ecol Prog Ser 329:13–21. https://doi.org/10.3354/meps329013 es_ES
dc.description.references Latasa M, Scharek R, Vidal M, Vila-Reixach G, Gutiérrez-Rodríguez A, Emelianov M, Gasol JM (2010) Preferences of phytoplankton groups for waters of different trophic status in the northwestern Mediterranean Sea. Mar Ecol Prog Ser 407:27–42. https://doi.org/10.3354/meps08559 es_ES
dc.description.references Lemonnier H, Lantoine F, Courties C, Guillebault D, Nézan E, Chomérat N, Escoubeyrou K, Galinié C, Blockmans B, Laugier T (2016) Dynamics of phytoplankton communities in eutrophying tropical shrimp ponds affected by vibriosis. Mar Pollut Bull 110:449–459. https://doi.org/10.1016/j.marpolbul.2016.06.015 es_ES
dc.description.references Lin YC, Chen JC (2001) Acute toxicity of ammonia on Litopenaeus vannamei (Boone) juveniles at different salinity levels. J Exp Mar Biol Ecol 259:109–119. https://doi.org/10.1016/s0022-0981(01)00227-1 es_ES
dc.description.references Lin YC, Chen JC (2003) Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture 224:193–201. https://doi.org/10.1016/S0044-8486(03)00220-5 es_ES
dc.description.references Llario F, Rodilla M, Escrivá J, Falco S, Sebastiá-Frasquet MT (2018) Phytoplankton evolution during the creation of a biofloc system for shrimp culture. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-018-1655-5 es_ES
dc.description.references Macias-Sancho J, Poersch LH, Bauer W, Romano LA, Wasielesky W, Tesser MB (2014) Fishmeal substitution with Arthrospira (Spirulina platensis) in a practical diet for Litopenaeus vannamei: effects on growth and immunological parameters. Aquaculture 426:120–125. https://doi.org/10.1016/j.aquaculture.2014.01.028 es_ES
dc.description.references Mackey MD, Mackey DJ, Higgins HW, Wright SW (1996) CHEMTAX, a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser 144:265–283. https://doi.org/10.3354/meps144265 es_ES
dc.description.references O’Kelly CJ, Sieracki ME, Thier EC, Hobson IC (2003) A transient bloom of Ostreococcus (chlorophyta, prasinophyceae) in west Neck Bay, Long Island, New York. J Phycol 39:850–854. https://doi.org/10.1046/j.1529-8817.2003.02201.x es_ES
dc.description.references Paerl HW, Tucker CS (1995) Ecology of blue-green algae in aquaculture ponds. J World Aquac Soc 26:109–131. https://doi.org/10.1111/j.1749-7345.1995.tb00235.x es_ES
dc.description.references Pandey PK, Bharti V, Kumar K (2014) Biofilm in aquaculture production. Afr J Microbiol Res 8:1434–1443. https://doi.org/10.5897/ajmr2013.6445 es_ES
dc.description.references Phinney HK, McIntire CD (1965) Effect of temperature on metabolism of periphyton communities developed in laboratory streams. Limnol Oceanogr 10:341–345. https://doi.org/10.4319/lo.1965.10.3.0341 es_ES
dc.description.references Preston NP, Burford MA, Jackson CJ, Crocos PJ (1995) Sustainable shrimp farming in Australia-prospects and constraints. Proc PACON Sustain Aquac 95:308–316 es_ES
dc.description.references Ray AJ, Lewis BL, Browdy CL, Leffler JW (2010) Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimal-exchange, superintensive culture systems. Aquaculture 299:89–98. https://doi.org/10.1016/j.aquaculture.2009.11.021 es_ES
dc.description.references Reed ML, Pinckney JL, Keppler CJ, Brock LM, Hogan SB, Greenfield DI (2016) The influence of nitrogen and phosphorus on phytoplankton growth and assemblage composition in four coastal, southeastern USA systems. Estuar Coast Shelf S 177:71–82. https://doi.org/10.1016/j.ecss.2016.05.002 es_ES
dc.description.references Renaud SM, Thinh LV, Lambrinidis G, Parry DL (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211:195–214. https://doi.org/10.1016/s0044-8486(01)00875-4 es_ES
dc.description.references Roy S, Llewellyn C, Egeland E, Johnsen G (2011) Phytoplankton pigments: characterization, chemotaxonomy and applications in oceanography. Cambridge University Press, New York es_ES
dc.description.references Ryther JH, Officer CB (1981) Impact of nutrient enrichment on water uses. Estuar Nutr. https://doi.org/10.1007/978-1-4612-5826-1_11 es_ES
dc.description.references Sanders JG, Cibik SJ, D’Elia CF, Boynton WR (1987) Nutrient enrichment studies in a coastal plain estuary: changes in phytoplankton species composition. Can J Fish Aquat Sci 44:83–90. https://doi.org/10.1139/f87-010 es_ES
dc.description.references Schlüter L, Lauridsen TL, Krogh G, Jørgensen T (2006) Identification and quantification of phytoplankton groups in lakes using new pigment ratios, a comparison between pigment analysis by HPLC and microscopy. Freshw Biol 51:1474–1485. https://doi.org/10.1111/j.1365-2427.2006.01582.x es_ES
dc.description.references Schveitzer R, Arantes R, Baloi MF, Costódio PFS, Arana LV, Seiffert WQ, Andreatta ER (2013a) Use of artificial substrates in the culture of Litopenaeus vannamei (Biofloc System) at different stocking densities: effects on microbial activity, water quality and production rates. Aquacult Eng 54:93–103. https://doi.org/10.1016/j.aquaeng.2012.12.003 es_ES
dc.description.references Schveitzer R, Arantes R, Costódio PF, Santo CM, Arana LV, Seiffert WQ, Andreatta ER (2013b) Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tanks system operated with no water exchange. Aquac Eng 56:59–70. https://doi.org/10.1016/j.aquaeng.2013.04.006 es_ES
dc.description.references Sebastiá MT, Rodilla M (2013) Nutrient and phytoplankton analysis of a Mediterranean Coastal area. Environ Manag 51:225–240. https://doi.org/10.1007/s00267-012-9986-3 es_ES
dc.description.references Sebastiá MT, Rodilla M, Sanchis J, Altur V (2012) Influence of nutrient inputs from a wetland dominated by agriculture on the phytoplankton community in a shallow harbour at the Spanish Mediterranean coast. Agric Ecosyst Environ 152:10–20. https://doi.org/10.1016/j.agee.2012.02.006 es_ES
dc.description.references Silva A, Mendes CR, Palma S, Brotas V (2008) Short-time scale variation of phytoplankton succession in Lisbon bay (Portugal) as revealed by microscopy cell counts and HPLC pigment analysis. Estuar Coast Shelf S 79:230–238. https://doi.org/10.1016/j.ecss.2008.04.004 es_ES
dc.description.references Sinden A, Sinang SC (2016) Cyanobacteria in aquaculture systems: linking the occurrence, abundance and toxicity with rising temperatures. Int J Environ Sci Technol 13:2855–2862. https://doi.org/10.1007/s13762-016-1112-2 es_ES
dc.description.references Smith JL, Boyer GL, Zimba PV (2008) A review of cyanobacterial odorous and bioactive metabolites: impacts and management alternatives in aquaculture. Aquaculture 280:5–20. https://doi.org/10.1016/j.aquaculture.2008.05.007 es_ES
dc.description.references Sruthisree C, Nayak H, Gowda G, Kumar B (2015) Evaluation of periphyton and biofilm growth on different substrates in shrimp culture pond. J Exp Zool India 18:625–630 es_ES
dc.description.references Suda S, Watanabe MM, Otsuka S, Mahakahant A, Yongmanitchai W, Nopartnaraporn N, Yongding L, Day JG (2002) Taxonomic revision of water-bloom-forming species of oscillatorioid cyanobacteria. Int J Syst Evol Micr 52:1577–1595. https://doi.org/10.1099/ijs.0.01834-0 es_ES
dc.description.references Šupraha L, Bosak S, Ljubešić Z, Mihanović H, Olujić G, Mikac I, Viličić D (2014) Cryptophyte bloom in a Mediterranean estuary: high abundance of Plagioselmis cf. prolonga in the Krka River estuary (eastern Adriatic Sea). Sci Mar 78:329–338. https://doi.org/10.3989/scimar.03998.28c es_ES
dc.description.references Thompson FL, Abreu PC, Wasielesky W (2002) Importance of biofilm for water quality and nourishment in intensive shrimp culture. Aquaculture 203:263–278. https://doi.org/10.1016/s0044-8486(01)00642-1 es_ES
dc.description.references Utermohl M (1985) Zur Vervollkommnung der quantitative Phytoplankton-Methodik. Limnologie 9:1–38 es_ES
dc.description.references Viau VE, Souza DM, Rodríguez EM, Wasielesky W, Abreu PC, Ballester EL (2013) Biofilm feeding by postlarvae of the pink shrimp Farfantepenaeus brasiliensis (Decapoda, Penaidae). Aquac Res 44:783–794. https://doi.org/10.1111/j.1365-2109.2011.03087.x es_ES
dc.description.references Wright S, Jeffrey S, Mantoura R, Llewellyn C, Bjornland T, Repeta D, Welschmeyer N (1991) Improved HPLC method for the analysis of chlorophylls and carotenoids from. Mar Ecol Prog Ser 77:186–196. https://doi.org/10.3354/meps077183 es_ES
dc.description.references Yusoff FM, Zubaidah MS, Matias HB, Kwan TS (2002) Phytoplankton succession in intensive marine shrimp culture ponds treated with a commercial bacterial product. Aquac Res 33:269–278. https://doi.org/10.1046/j.1355-557x.2002.00671.x es_ES
dc.description.references Zhang T, Li L, Song L, Chen W (2009) Effects of temperature and light on the growth and geosmin production of Lyngbya kuetzingii (Cyanophyta). J Appl Phycol 21:279–285. https://doi.org/10.1007/s10811-008-9363-z es_ES
dc.description.references Zhang W, Xu H, Jiang Y, Zhu M, Al-Rasheid KA (2012) Colonization dynamics in trophic-functional structure of periphytic protist communities in coastal waters. Mar Biol 159:735–748. https://doi.org/10.1007/s00227-011-1850-0 es_ES
dc.description.references Zimba PV, Camus A, Allen EH, Burkholder JM (2006) Co-occurrence of white shrimp, Litopenaeus vannamei, mortalities and microcystin toxin in a southeastern USA shrimp facility. Aquaculture 26:1048–1055. https://doi.org/10.1016/j.aquaculture.2006.08.037 es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem