- -

Data Mining Paradigm in the Study of Air Quality

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Data Mining Paradigm in the Study of Air Quality

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Represa, Natacha Soledad es_ES
dc.contributor.author Fernández-Sarría, Alfonso es_ES
dc.contributor.author Porta, Andrés es_ES
dc.contributor.author Palomar-Vázquez, Jesús es_ES
dc.date.accessioned 2021-02-06T04:33:37Z
dc.date.available 2021-02-06T04:33:37Z
dc.date.issued 2020-03 es_ES
dc.identifier.issn 2198-7491 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160828
dc.description.abstract [EN] Air pollution is a serious global problem that threatens human life and health, as well as the environment. The most important aspect of a successful air quality management strategy is the measurement analysis, air quality forecasting, and reporting system. A complete insight, an accurate prediction, and a rapid response may provide valuable information for society¿s decision-making. The data mining paradigm can assist in the study of air quality by providing a structured work methodology that simplifies data analysis. This study presents a systematic review of the literature from 2014 to 2018 on the use of data mining in the analysis of air pollutant measurements. For this review, a data mining approach to air quality analysis was proposed that was consistent with the 748 articles consulted. The most frequent sources of data have been the measurements of monitoring networks, and other technologies such as remote sensing, low-cost sensors, and social networks which are gaining importance in recent years. Among the topics studied in the literature were the redundancy of the information collected in the monitoring networks, the forecasting of pollutant levels or days of excessive regulation, and the identification of meteorological or land use parameters that have the most substantial impact on air quality. As methods to visualise and present the results, we recovered graphic design, air quality index development, heat mapping, and geographic information systems. We hope that this study will provide anchoring of theoretical-practical development in the field and that it will provide inputs for air quality planning and management. es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof Environmental Processes es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Air quality es_ES
dc.subject Environmental management es_ES
dc.subject Air pollution es_ES
dc.subject Data mining es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.title Data Mining Paradigm in the Study of Air Quality es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s40710-019-00407-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANPCyT//PICT-2015-0618/AR/Estudio de potenciales emergencias químicas en escenarios urbanos y suburbanos con modelos simples y complejos/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria es_ES
dc.description.bibliographicCitation Represa, NS.; Fernández-Sarría, A.; Porta, A.; Palomar-Vázquez, J. (2020). Data Mining Paradigm in the Study of Air Quality. Environmental Processes. 7(1):1-21. https://doi.org/10.1007/s40710-019-00407-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s40710-019-00407-5 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\399193 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Universidad Nacional de La Plata, Argentina es_ES
dc.contributor.funder Agencia Nacional de Promoción Científica y Tecnológica, Argentina es_ES
dc.contributor.funder Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina es_ES
dc.description.references Alsahli MM, Al-Harbi M (2018) Allocating optimum sites for air quality monitoring stations using GIS suitability analysis. Urban Clim 24:875–886 es_ES
dc.description.references Amegah AK, Agyei-Mensah S (2017) Urban air pollution in sub-Saharan Africa: time for action. Environ Pollut 220:738–743 es_ES
dc.description.references Austin E, Coull BA, Zanobetti A, Koutrakis P (2013) A framework to spatially cluster air pollution monitoring sites in US based on the PM2.5 composition. Environ Int 59:244–254 es_ES
dc.description.references Bai Y, Li Y, Wang X, Xie J, Li C (2016) Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions. Atmos Pollut Res 7(3):557–566 es_ES
dc.description.references Bakhtiarifar MH, Bashiri M, Amiri A (2017) Optimization of problems with multivariate multiple functional responses: a case study in air quality. Commun Statist Simul Comput 46(10):8049–8063 es_ES
dc.description.references Baldasano JM, Valera E, Jimenez P (2003) Air quality data from large cities. Sci Total Environ 307:141–165 es_ES
dc.description.references Bellinger C, Jabbar MSM, Zaïane O, Osornio-Vargas A (2017) A systematic review of data mining and machine learning for air pollution epidemiology. BMC Public Health 17(1):907 es_ES
dc.description.references Biancofiore F, Busilacchio M, Verdecchia M, Tomassetti B, Aruffo E, Bianco S et al (2017) Recursive neural network model for analysis and forecast of PM10 and PM2.5. Atmos Pollut Res 8(4):652–659 es_ES
dc.description.references Birant D (2011) Comparison of decision tree algorithms for predicting potential air pollutant emissions with data mining models. J Environ Inform 17(1) es_ES
dc.description.references Carslaw DC, Ropkins K (2012) Openair—an R package for air quality data analysis. Environ Model Softw 27:52–61 es_ES
dc.description.references Castellanos MG, Dayal U, Simitsis A, Wilkinson WK (2014). Quality-driven ETL design optimization 2014. U.S. Patent No. 8:719–769. U.S. Patent and Trademark Office, Washington, DC es_ES
dc.description.references Chen G, Li S, Knibbs LD, Hamm NAS, Cao W, Li T, Guo J, Ren H, Abramson MJ, Guo Y (2018a) A machine learning method to estimate PM 2.5 concentrations across China with remote sensing, meteorological and land use information. Science of the Total Environment 636:52-60 es_ES
dc.description.references Chen G, Wang Y, Li S, Cao W, Ren H, Knibbs LD, Abramson MJ, Guo Y (2018b) Spatiotemporal patterns of PM10 concentrations over China during 2005–2016: A satellite-based estimation using the random forests approach. Environmental Pollution 242:605-613 es_ES
dc.description.references Chen J, Xin J, An J, Wang Y, Liu Z, Chao N, Meng Z (2014) Observation of aerosol optical properties and particulate pollution at background station in the Pearl River Delta region. Atmos Res 143:216–227 es_ES
dc.description.references Chen M, Wang P, Chen Q, Wu J, Chen X (2015) A clustering algorithm for sample data based on environmental pollution characteristics. Atmos Environ 107:194–203 es_ES
dc.description.references Chen Y, Wang L, Li F, Du B, Choo KKR, Hassan H, Qin W (2017) Air quality data clustering using EPLS method. Inform Fusion 36:225–232 es_ES
dc.description.references Csépe Z, Makra L, Voukantsis D, Matyasovszky I, Tusnády G, Karatzas K, Thibaudon M (2014) Predicting daily ragweed pollen concentrations using computational intelligence techniques over two heavily polluted areas in Europe. Sci Total Environ 476:542–552 es_ES
dc.description.references Desarkar A, Das A (2018) Implementing decision tree in air pollution reduction framework. In: Smart computing and informatics. Springer, Singapore, pp 105–113 es_ES
dc.description.references Dincer NG, Akkuş Ö (2018) A new fuzzy time series model based on robust clustering for forecasting of air pollution. Ecol Inform 43:157–164 es_ES
dc.description.references Domańska D, Łukasik S (2016) Handling high-dimensional data in air pollution forecasting tasks. Ecol Inform 34:70–91 es_ES
dc.description.references Domańska D, Wojtylak M (2014) Explorative forecasting of air pollution. Atmos Environ 92:19–30 es_ES
dc.description.references Duboue M (1978) Pollution roses: a simple way of interpreting the data obtained by air pollution measurement systems in the proximity of refineries. Stud Environ Sci:133–136 es_ES
dc.description.references Elangasinghe MA, Singhal N, Dirks KN, Salmond JA (2014b) Development of an ANN–based air pollution forecasting system with explicit knowledge through sensitivity analysis. Atmos Pollut Res 5(4):696–708 es_ES
dc.description.references Elangasinghe MA, Singhal N, Dirks KN, Salmond JA, Samarasinghe S (2014a) Complex time series analysis of PM10 and PM2.5 for a coastal site using artificial neural network modelling and k-means clustering. Atmos Environ 94:106–116 es_ES
dc.description.references European Commission (2008) Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off J European Union es_ES
dc.description.references Feng X, Li Q, Zhu Y, Hou J, Jin L, Wang J (2015) Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmos Environ 107:118–128 es_ES
dc.description.references Franceschi F, Cobo M, Figueredo M (2018) Discovering relationships and forecasting PM10 and PM2.5 concentrations in Bogotá, Colombia, using artificial neural networks, principal component analysis, and k-means clustering. Atmos Pollut Res 9(5):912–922 es_ES
dc.description.references Fu M, Wang W, Le Z, Khorram MS (2015) Prediction of particulate matter concentrations by developed feed-forward neural network with rolling mechanism and gray model. Neural Comput Appl 26(8):1789–1797 es_ES
dc.description.references Gacquer D, Delcroix V, Delmotte F, Piechowiak S (2011) Comparative study of supervised classification algorithms for the detection of atmospheric pollution. Eng Appl Artif Intell 24(6):1070–1083 es_ES
dc.description.references Gómez-Losada Á (2017) Clustering air monitoring stations according to background and ambient pollution using hidden Markov models and multidimensional scaling. In: Data science. Springer, Cham, pp 123–132 es_ES
dc.description.references Gong B, Ordieres-Meré J (2016) Prediction of daily maximum ozone threshold exceedances by preprocessing and ensemble artificial intelligence techniques: case study of Hong Kong. Environ Model Softw 84:290–303 es_ES
dc.description.references Gong B, Ordieres-Meré J (2017) Reconfiguring existing pollutant monitoring stations by increasing the value of the gathered information. Environmental Modelling & Software 96:106-122 es_ES
dc.description.references Gulia S, Nagendra SS, Khare M, Khanna I (2015) Urban air quality management-a review. Atmos Pollut Res 6(2):286–304 es_ES
dc.description.references Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier, New York es_ES
dc.description.references Harkat MF, Mansouri M, Nounou M, Nounou H (2018) Enhanced data validation strategy of air quality monitoring network. Environ Res 160:183–194 es_ES
dc.description.references Hasenfratz D, Saukh O, Walser C, Hueglin C, Fierz M, Arn T et al (2015) Deriving high-resolution urban air pollution maps using mobile sensor nodes. Pervasive Mobile Comput 16:268–285 es_ES
dc.description.references Hastie TJ (2017) Generalized additive models. In: Statistical models in S. Routledge, Boca Raton, pp 249–307 es_ES
dc.description.references He HD, Li M, Wang WL, Wang ZY, Xue Y (2018) Prediction of PM2. 5 concentration based on the similarity in air quality monitoring network. Building and Environment 137:11-17 es_ES
dc.description.references Holešovský J, Čampulová M, Michálek J (2018) Semiparametric outlier detection in nonstationary times series: case study for atmospheric pollution in Brno, Czech Republic. Atmos Pollut Res 9(1):27–36 es_ES
dc.description.references Honarvar AR, Sami A (2019) Towards sustainable smart city by particulate matter prediction using urban big data, excluding expensive air pollution infrastructures. Big Data Res 17:56–65 es_ES
dc.description.references Hu Y, Fan J, Zhang H, Chen X, Dai G (2016) An estimated method of urban PM2. 5 Concentration distribution for a mobile sensing system. Pervasive Mobile Comput 25:88–103 es_ES
dc.description.references Jiang P, Dong Q, Li P (2017) A novel hybrid strategy for PM2. 5 concentration analysis and prediction. J Environ Manag 196:443–457 es_ES
dc.description.references Junger WL, De Leon AP (2015) Imputation of missing data in time series for air pollutants. Atmos Environ 102:96–104 es_ES
dc.description.references Junninen H, Niska H, Tuppurainen K, Ruuskanen J, Kolehmainen M (2004) Methods for imputation of missing values in air quality data sets. Atmos Environ 38(18):2895–2907 es_ES
dc.description.references Kitchenham B (2004) Procedures for performing systematic reviews. Keele UK Keele Univ 33(2004):1–26 es_ES
dc.description.references Knaflic CN (2015) Storytelling with data: a data visualization guide for business professionals. Wiley es_ES
dc.description.references Leung Y, Leung KS, Wong MH, Mak T, Cheung KY, Lo LY et al (2018) An integrated web-based air pollution decision support system–a prototype. Int J Geogr Inform Sci:1–28 es_ES
dc.description.references Li Q, Shao J (2015) Regularizing lasso: a consistent variable selection method. Stat Sin:975–992 es_ES
dc.description.references Liao TW (2005) Clustering of time series data—a survey. Pattern Recogn 38(11):1857–1874 es_ES
dc.description.references Lin H, Liu T, Xiao J, Zeng W, Li X, Guo L et al (2016) Quantifying short-term and long-term health benefits of attaining ambient fine particulate pollution standards in Guangzhou, China. Atmos Environ 137:38–44 es_ES
dc.description.references Liu Z, Xie M, Tian K, Gao P (2017) GIS-based analysis of population exposure to PM2. 5 air pollution—a case study of Beijing. J Environ Sci 59:48–53 es_ES
dc.description.references Ma KL, Liao I, Frazier J, Hauser H, Kostis HN (2012) Scientific storytelling using visualization. IEEE Comput Graph Appl 32(1):12–19 es_ES
dc.description.references Mabahwi NAB, Leh OLH, Omar D (2014) Human health and wellbeing: human health effect of air pollution. Procedia Soc Behav Sci 153:221–229 es_ES
dc.description.references Marć M, Bielawska M, Simeonov V, Namieśnik J, Zabiegała B (2016) The effect of anthropogenic activity on BTEX, NO2, SO2, and CO concentrations in urban air of the spa city of Sopot and medium-industrialized city of Tczew located in North Poland. Environ Res 147:513–524 es_ES
dc.description.references Martínez J, Saavedra Á, García-Nieto PJ, Piñeiro JI, Iglesias C, Taboada J et al (2014) Air quality parameters outliers detection using functional data analysis in the Langreo urban area (Northern Spain). Appl Math Comput 241:1–10 es_ES
dc.description.references Mayer H (1999) Air pollution in cities. Atmos Environ 33(24–25):4029–4037 es_ES
dc.description.references Mintz D (2012). Technical assistance document for the reporting of daily air quality-the air quality index (aqi): US environmental protection agency. Office of Air Quality Planning and Standards es_ES
dc.description.references Mori U, Mendiburu A, Lozano JA (2016) Similarity measure selection for clustering time series databases. IEEE Trans Knowl Data Eng 28(1):181–195 es_ES
dc.description.references Ni XY, Huang H, Du WP (2017) Relevance analysis and short-term prediction of PM2.5 concentrations in Beijing based on multi-source data. Atmos Environ 150:146–161 es_ES
dc.description.references Olvera-García MÁ, Carbajal-Hernández JJ, Sánchez-Fernández LP, Hernández-Bautista I (2016) Air quality assessment using a weighted fuzzy inference system. Ecol inform 33:57–74 es_ES
dc.description.references Petkova EP, Jack DW, Volavka-Close NH, Kinney PL (2013) Particulate matter pollution in African cities. Air Qual Atmos Health 6(3):603–614 es_ES
dc.description.references Pires JCM, Sousa SIV, Pereira MC, Alvim-Ferraz MCM, Martins FG (2008) Management of air quality monitoring using principal component and cluster analysis—Part I: SO2 and PM10. Atmos Environ 42(6):1249–1260 es_ES
dc.description.references Podobnik B, Stanley HE (2008) Detrended cross-correlation analysis: a new method for analyzing two nonstationary time series. Phys Rev Lett 100(8):084102 es_ES
dc.description.references Qiao ZX, Pan W, Lu WZ (2017) Multiscale multifractal properties between ground-level ozone and its precursors in rural area in Hong Kong. J Environ Manag 196:270–277 es_ES
dc.description.references Qin S, Liu F, Wang C, Song Y, Qu J (2015) Spatial-temporal analysis and projection of extreme particulate matter (PM10 and PM2.5) levels using association rules: A case study of the Jing-Jin-Ji region, China. Atmospheric Environment 120:339-350 es_ES
dc.description.references Rathore MMU, Paul A, Ahmad A, Chen BW, Huang B, Ji W (2015) Real-time big data analytical architecture for remote sensing application. IEEE J Sel Top Appl Earth Obs Remote Sens 8(10):4610–4621 es_ES
dc.description.references Russo A, Lind PG, Raischel F, Trigo R, Mendes M (2015) Neural network forecast of daily pollution concentration using optimal meteorological data at synoptic and local scales. Atmos Pollut Res 6(3):540–549 es_ES
dc.description.references Sadat YK, Nikaein T, Karimipour F (2015) Fuzzy spatial association rule mining to analyze the effect of environmental variables on the risk of allergic asthma prevalence. Geodesy Cartogr 41(2):101–112 es_ES
dc.description.references Salako GO, Hopke PK (2012) Impact of percentile computation method on PM 24-h air quality standard. J Environ Manag 107:110–113 es_ES
dc.description.references Sammarco M, Tse R, Pau G, Marfia G (2017) Using geosocial search for urban air pollution monitoring. Pervasive Mobile Comput 35:15–31 es_ES
dc.description.references Sekar C, Gurjar BR, Ojha CSP, Goyal MK (2015) Potential assessment of neural network and decision tree algorithms for forecasting ambient PM 2.5 and CO concentrations: case study. J Hazard Toxic Radioactive Waste 20(4):A5015001 es_ES
dc.description.references Shahbazi H, Taghvaee S, Hosseini V, Afshin H (2016) A GIS based emission inventory development for Tehran. Urban Clim 17:216–229 es_ES
dc.description.references Sharma P, Chandra A, Kaushik SC (2009) Forecasts using box–Jenkins models for the ambient air quality data of Delhi City. Environ Monit Assess 157(1–4):105–112 es_ES
dc.description.references Shi D, Guan J, Zurada J, Manikas A (2017) A data-mining approach to identification of risk factors in safety management systems. J Manag Inf Syst 34(4):1054–1081 es_ES
dc.description.references Shi Y, Lau KKL, Ng E (2017b) Incorporating wind availability into land use regression modelling of air quality in mountainous high-density urban environment. Environ Res 157:17–29 es_ES
dc.description.references Shmilovici A (2009) Support vector machines. In: Maimon O, Rokach L (eds) Data mining and knowledge discovery handbook. Springer, Boston, MA es_ES
dc.description.references Soh PW, Chang JW, Huang JW (2018) Adaptive deep learning-based air quality prediction model using the Most relevant spatial-temporal relations. IEEE Access 6:38186–38199 es_ES
dc.description.references Soysal ÖM (2015) Association rule mining with mostly associated sequential patterns. Expert Syst Appl 42(5):2582–2592 es_ES
dc.description.references Sulemana I (2012) Assessing over-aged Car legislation as an environmental policy law in Ghana. Int J Bus Soc Sci 3(20) es_ES
dc.description.references Sullivan TJ, Driscoll CT, Beier CM, Burtraw D, Fernandez IJ, Galloway JN et al (2018) Air pollution success stories in the United States: the value of long-term observations. Environ Sci Policy 84:69–73 es_ES
dc.description.references Terry WR, Lee JB, Kumar A (1986) Time series analysis in acid rain modeling: evaluation of filling missing values by linear interpolation. Atmos Environ 20:1941–1943 es_ES
dc.description.references Tian Y, Yao X, Chen L (2019) Analysis of spatial and seasonal distributions of air pollutants by incorporating urban morphological characteristics. Comput Environ Urban Syst 75:35–48 es_ES
dc.description.references Villar A, Zarrabeitia MT, Fdez-Arroyabe P, Santurtún A (2018) Integrating and analyzing medical and environmental data using ETL and business intelligence tools. Int J Biometeorol 62(6):1085–1095 es_ES
dc.description.references Wamba SF, Akter S, Edwards A, Chopin G, Gnanzou D (2015) How ‘big data’ can make big impact: findings from a systematic review and a longitudinal case study. Int J Prod Econ 165:234–246 es_ES
dc.description.references Wang D, Wei S, Luo H, Yue C, Grunder O (2017a) A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine. Sci Total Environ 580:719–733 es_ES
dc.description.references Wang H, Zhao L (2018) A joint prevention and control mechanism for air pollution in the Beijing-Tianjin-Hebei region in China based on long-term and massive data mining of pollutant concentration. Atmos Environ 174:25–42 es_ES
dc.description.references Wang J, Song G (2018) A deep spatial-temporal ensemble model for air quality prediction. Neurocomputing 314:198–206 es_ES
dc.description.references Wang J, Zhang X, Guo Z, Lu H (2017b) Developing an early-warning system for air quality prediction and assessment of cities in China. Expert Syst Appl 84:102–116 es_ES
dc.description.references Wang L, Zhong B, Vardoulakis S, Zhang F, Pilot E, Li Y et al (2016) Air quality strategies on public health and health equity in Europe—a systematic review. Int J Environ Res Public Health 13(12):1196 es_ES
dc.description.references Wang S, Paul MJ, Dredze M (2015) Social media as a sensor of air quality and public response in China. J Med Internet Res 17(3) es_ES
dc.description.references Westerlund J, Urbain JP, Bonilla J (2014) Application of air quality combination forecasting to Bogota. Atmos Environ 89:22–28 es_ES
dc.description.references Witten IH, Frank E, Hall MA, Pal CJ (2016) Data mining: practical machine learning tools and techniques. Morgan Kaufmann es_ES
dc.description.references World Health Organization (2016). Ambient air pollution: a global assessment of exposure and burden of disease es_ES
dc.description.references Wu Y, Zhang F, Shi Y, Pilot E, Lin L, Fu Y et al (2016) Spatiotemporal characteristics and health effects of air pollutants in Shenzhen. Atmos Pollut Res 7(1):58–65 es_ES
dc.description.references Xie Y, Zhao L, Xue J, Gao HO, Li H, Jiang R et al (2018) Methods for defining the scopes and priorities for joint prevention and control of air pollution regions based on data-mining technologies. J Clean Prod 185:912–921 es_ES
dc.description.references Xu Y, Yang W, Wang J (2017) Air quality early-warning system for cities in China. Atmos Environ 148:239–257 es_ES
dc.description.references Yang F, Tan J, Zhao Q, Du Z, He K, Ma Y et al (2011) Characteristics of PM2.5 speciation in representative megacities and across China. Atmos Chem Phys 11(11):5207–5219 es_ES
dc.description.references Yang G, Huang J, Li X (2018b) Mining sequential patterns of PM2. 5 pollution in three zones in China. J Clean Prod 170:388–398 es_ES
dc.description.references Yang L, Xu H, Jin Z (2018a). Estimating spatial variability of ground-level PM2.5 based on a satellite-derived aerosol optical depth product: Fuzhou, China es_ES
dc.description.references Yang X, Zheng Y, Geng G, Liu H, Man H, Lv Z, He K, de Hoogh K (2017) Development of PM2.5 and NO2 models in a LUR framework incorporating satellite remote sensing and air quality model data in Pearl River Delta region, China. Environmental Pollution 226:143–153 es_ES
dc.description.references Yeganeh B, Hewson MG, Clifford S, Knibbs LD, Morawska L (2017) A satellite-based model for estimating PM2.5 concentration in a sparsely populated environment using soft computing techniques. Environ Model Softw 88:84–92 es_ES
dc.description.references Zhang C, Ni Z, Ni L (2015) Multifractal detrended cross-correlation analysis between PM2.5 and meteorological factors. Physica A: Statist Mech Appl 438:114–123 es_ES
dc.description.references Zhang NN, Ma F, Qin CB, Li YF (2018) Spatiotemporal trends in PM2.5 levels from 2013 to 2017 and regional demarcations for joint prevention and control of atmospheric pollution in China. Chemosphere 210:1176–1184 es_ES
dc.description.references Zhang Y, Bocquet M, Mallet V, Seigneur C, Baklanov A (2012) Real-time air quality forecasting. Part I: History, techniques, and current status. Atmos Environ 60:632–655 es_ES
dc.description.references Zhao C, Song G (2017) Application of data mining to the analysis of meteorological data for air quality prediction: a case study in Shenyang. IOP Conf Ser: Earth Environ Sci 81(1) es_ES
dc.description.references Zotteri G, Kalchschmidt M, Caniato F (2005) The impact of aggregation level on forecasting performance. Int J Prod Econ 93:479–491 es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem