- -

Analytic solution to the generalized delay diffusion equation with uncertain inputs in the random Lebesgue sense

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analytic solution to the generalized delay diffusion equation with uncertain inputs in the random Lebesgue sense

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author Jornet, Marc es_ES
dc.date.accessioned 2021-02-06T04:33:39Z
dc.date.available 2021-02-06T04:33:39Z
dc.date.issued 2021-01-30 es_ES
dc.identifier.issn 0170-4214 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160829
dc.description.abstract [EN] In this paper, we deal with the randomized generalized diffusion equation with delay:u(t)(t, x) = a(2)u(xx)(t, x) + b(2)u(xx)(t - tau, x),t > tau,0 <= x <= l;u(t,0)=u(t,l)=0,t >= 0;u(t,x)=phi(t,x),0 <= t <= tau,0 <= x <= l. Here,tau > 0andl > 0are constant. The coefficientsa(2)andb(2)are nonnegative random variables, and the initial condition phi(t, x)and the solutionu(t, x)are random fields. The separation of variables method develops a formal series solution. We prove that the series satisfies the delay diffusion problem in the random Lebesgue sense rigorously. By truncating the series, the expectation and the variance of the random-field solution can be approximated. es_ES
dc.description.sponsorship Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Grant/Award Number: MTM2017-89664-P; Spanish Ministerio de Economia, Industria y Competitividad (MINECO); Agencia Estatal de Investigacion (AEI); Fondo Europeo de Desarrollo Regional (FEDER UE), Grant/Award Number: MTM2017-89664-P es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Mathematical Methods in the Applied Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Expectation and variance approximation es_ES
dc.subject Random generalized diffusion equation with delay es_ES
dc.subject Random Lebesgue calculus es_ES
dc.subject Series solution es_ES
dc.subject Uncertainty quantification es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Analytic solution to the generalized delay diffusion equation with uncertain inputs in the random Lebesgue sense es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/mma.6921 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Cortés, J.; Jornet, M. (2021). Analytic solution to the generalized delay diffusion equation with uncertain inputs in the random Lebesgue sense. Mathematical Methods in the Applied Sciences. 44(2):2265-2272. https://doi.org/10.1002/mma.6921 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/mma.6921 es_ES
dc.description.upvformatpinicio 2265 es_ES
dc.description.upvformatpfin 2272 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 44 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\418101 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Smith, H. (2011). An Introduction to Delay Differential Equations with Applications to the Life Sciences. Texts in Applied Mathematics. doi:10.1007/978-1-4419-7646-8 es_ES
dc.description.references Driver, R. D. (1977). Ordinary and Delay Differential Equations. Applied Mathematical Sciences. doi:10.1007/978-1-4684-9467-9 es_ES
dc.description.references Kolmanovskii, V., & Myshkis, A. (1999). Introduction to the Theory and Applications of Functional Differential Equations. doi:10.1007/978-94-017-1965-0 es_ES
dc.description.references Wu, J. (1996). Theory and Applications of Partial Functional Differential Equations. Applied Mathematical Sciences. doi:10.1007/978-1-4612-4050-1 es_ES
dc.description.references Diekmann, O., Verduyn Lunel, S. M., van Gils, S. A., & Walther, H.-O. (1995). Delay Equations. Applied Mathematical Sciences. doi:10.1007/978-1-4612-4206-2 es_ES
dc.description.references Hale, J. K. (1977). Theory of Functional Differential Equations. Applied Mathematical Sciences. doi:10.1007/978-1-4612-9892-2 es_ES
dc.description.references Travis, C. C., & Webb, G. F. (1974). Existence and stability for partial functional differential equations. Transactions of the American Mathematical Society, 200, 395-395. doi:10.1090/s0002-9947-1974-0382808-3 es_ES
dc.description.references Bocharov, G. A., & Rihan, F. A. (2000). Numerical modelling in biosciences using delay differential equations. Journal of Computational and Applied Mathematics, 125(1-2), 183-199. doi:10.1016/s0377-0427(00)00468-4 es_ES
dc.description.references Jackson, M., & Chen-Charpentier, B. M. (2017). Modeling plant virus propagation with delays. Journal of Computational and Applied Mathematics, 309, 611-621. doi:10.1016/j.cam.2016.04.024 es_ES
dc.description.references Chen-Charpentier, B. M., & Diakite, I. (2016). A mathematical model of bone remodeling with delays. Journal of Computational and Applied Mathematics, 291, 76-84. doi:10.1016/j.cam.2014.11.025 es_ES
dc.description.references ErneuxT.Applied Delay Differential Equations Surveys and Tutorials in the Applied Mathematical Sciences Series:Springer New York;2009. es_ES
dc.description.references Kyrychko, Y. N., & Hogan, S. J. (2010). On the Use of Delay Equations in Engineering Applications. Journal of Vibration and Control, 16(7-8), 943-960. doi:10.1177/1077546309341100 es_ES
dc.description.references Matsumoto, A., & Szidarovszky, F. (2009). Delay Differential Nonlinear Economic Models. Nonlinear Dynamics in Economics, Finance and Social Sciences, 195-214. doi:10.1007/978-3-642-04023-8_11 es_ES
dc.description.references Harding, L., & Neamţu, M. (2016). A Dynamic Model of Unemployment with Migration and Delayed Policy Intervention. Computational Economics, 51(3), 427-462. doi:10.1007/s10614-016-9610-3 es_ES
dc.description.references Xiu, D. (2010). Numerical Methods for Stochastic Computations. doi:10.2307/j.ctv7h0skv es_ES
dc.description.references Le Maître, O. P., & Knio, O. M. (2010). Spectral Methods for Uncertainty Quantification. Scientific Computation. doi:10.1007/978-90-481-3520-2 es_ES
dc.description.references NeckelT RuppF.Random Differential Equations in Scientific Computing. Walter de Gruyter;2013. es_ES
dc.description.references Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061 es_ES
dc.description.references Calatayud, J., Cortés, J.-C., & Jornet, M. (2019). Improving the Approximation of the First- and Second-Order Statistics of the Response Stochastic Process to the Random Legendre Differential Equation. Mediterranean Journal of Mathematics, 16(3). doi:10.1007/s00009-019-1338-6 es_ES
dc.description.references Licea, J. A., Villafuerte, L., & Chen-Charpentier, B. M. (2013). Analytic and numerical solutions of a Riccati differential equation with random coefficients. Journal of Computational and Applied Mathematics, 239, 208-219. doi:10.1016/j.cam.2012.09.040 es_ES
dc.description.references Burgos, C., Calatayud, J., Cortés, J.-C., & Villafuerte, L. (2018). Solving a class of random non-autonomous linear fractional differential equations by means of a generalized mean square convergent power series. Applied Mathematics Letters, 78, 95-104. doi:10.1016/j.aml.2017.11.009 es_ES
dc.description.references Calatayud, J., Cortés, J.-C., & Jornet, M. (2019). Random differential equations with discrete delay. Stochastic Analysis and Applications, 37(5), 699-707. doi:10.1080/07362994.2019.1608833 es_ES
dc.description.references Calatayud, J., Cortés, J.-C., & Jornet, M. (2019). $$\mathrm {L}^p$$-calculus Approach to the Random Autonomous Linear Differential Equation with Discrete Delay. Mediterranean Journal of Mathematics, 16(4). doi:10.1007/s00009-019-1370-6 es_ES
dc.description.references Martín, J. A., Rodríguez, F., & Company, R. (2004). Analytic solution of mixed problems for thegeneralized diffusion equation with delay. Mathematical and Computer Modelling, 40(3-4), 361-369. doi:10.1016/j.mcm.2003.10.046 es_ES
dc.description.references Martínez-Cervantes, G. (2016). Riemann integrability versus weak continuity. Journal of Mathematical Analysis and Applications, 438(2), 840-855. doi:10.1016/j.jmaa.2016.01.054 es_ES
dc.description.references Cortés, J. C., Sevilla-Peris, P., & Jódar, L. (2005). Analytic-numerical approximating processes of diffusion equation with data uncertainty. Computers & Mathematics with Applications, 49(7-8), 1255-1266. doi:10.1016/j.camwa.2004.05.015 es_ES
dc.description.references Khusainov, D. Y., Ivanov, A. F., & Kovarzh, I. V. (2009). Solution of one heat equation with delay. Nonlinear Oscillations, 12(2), 260-282. doi:10.1007/s11072-009-0075-3 es_ES
dc.description.references Calatayud, J., Cortés, J. C., & Jornet, M. (2018). Uncertainty quantification for random parabolic equations with nonhomogeneous boundary conditions on a bounded domain via the approximation of the probability density function. Mathematical Methods in the Applied Sciences, 42(17), 5649-5667. doi:10.1002/mma.5333 es_ES
dc.description.references BotevZ RidderA.Variance reductionWiley StatsRef: Statistics Reference Online;2017:1–6.https://doi.org/10.1002/9781118445112.stat07975 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem