- -

Ultrasonic online monitoring of the ham salting process. Methods for signal analysis: Time of flight calculation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ultrasonic online monitoring of the ham salting process. Methods for signal analysis: Time of flight calculation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Garcia-Perez, J.V. es_ES
dc.contributor.author De Prados, M. es_ES
dc.contributor.author Martínez, G. es_ES
dc.contributor.author Gomez Alvarez-Arenas, T. E. es_ES
dc.contributor.author Benedito Fort, José Javier es_ES
dc.date.accessioned 2021-02-06T04:33:42Z
dc.date.available 2021-02-06T04:33:42Z
dc.date.issued 2019-12 es_ES
dc.identifier.issn 0260-8774 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160831
dc.description.abstract [EN] In the dry-cured ham industry, an accurate control of the dry-salting process is especially complex because of the great heterogeneity of the meat pieces and the effect of different operational variables. The main objective of this study was to evaluate the feasibility of using an ultrasound system and methodology, adapted to the industry requirements, for the online monitoring of the ham dry-salting process. For that purpose, hams were dry salted for different times (4, 10, 11, 14, 16 and 30 days) at 2 degrees C. The cushion zone of the ham was placed over the transducers during salting and ultrasonic signals were taken automatically (5 min interval by using pulse-echo mode. Several methods of signal analysis were considered in order to assess the time of flight (TOF). TOF estimations by means of the energy threshold and cross-correlation methods (between the initial ultrasonic signal and the remaining signals measured during salting and between consecutive signals 5 min apart without interpolation) were affected by the low signal-to-noise ratio and the pulse distortion and were discarded for the online monitoring of ham salting. Otherwise, the cross-correlation method between consecutive signals (5 min apart) with interpolation n = 3 (CCM-CS n = 3), between non-consecutive signals (1 h apart) (CCM-NCS) and the phase spectrum method (PSM), provided close estimations of the variation of the TOF, which correlated well with the ham salt gain (R-2 = 0.83 for CCM-CS n = 3, 0.93 for CCM-NCS and 0.90 for PSM). Consequently, the use of ultrasonic pulse-echo TOF measurements could be considered as a simple, non-invasive, non-destructive and reliable technique for the industrial monitoring of the ham dry-salting process. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministerio de Economia y Competitividad (MINECO), Institute Nacional de Investigacion y Tecnologia Agraria y Alimentaria and European Regional Development Fund (ERDF 2014-2020) (project RTA 2013-00030-C03-02), and by the Universitat Politecnica de Valencia through the FPI grant awarded to Marta de Prados (SP-1.2011-S1-2757). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Food Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Salting es_ES
dc.subject Ham es_ES
dc.subject Time of flight es_ES
dc.subject Energy threshold es_ES
dc.subject Cross-correlation es_ES
dc.subject Phase spectrum es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Ultrasonic online monitoring of the ham salting process. Methods for signal analysis: Time of flight calculation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jfoodeng.2019.05.032 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP-1.2011-S1-2757/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2013-00030-C03-02/ES/Caracterización y detección objetiva de defectos de textura en jamón curado mediante tecnologías no destructivas. Desarrollo y evaluación de medidas correctoras/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Garcia-Perez, J.; De Prados, M.; Martínez, G.; Gomez Alvarez-Arenas, TE.; Benedito Fort, JJ. (2019). Ultrasonic online monitoring of the ham salting process. Methods for signal analysis: Time of flight calculation. Journal of Food Engineering. 263:87-95. https://doi.org/10.1016/j.jfoodeng.2019.05.032 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jfoodeng.2019.05.032 es_ES
dc.description.upvformatpinicio 87 es_ES
dc.description.upvformatpfin 95 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 263 es_ES
dc.relation.pasarela S\394397 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Aparicio, C., Otero, L., Guignon, B., Molina-García, A. D., & Sanz, P. D. (2008). Ice content and temperature determination from ultrasonic measurements in partially frozen foods. Journal of Food Engineering, 88(2), 272-279. doi:10.1016/j.jfoodeng.2008.02.011 es_ES
dc.description.references Awad, T., & Sato, K. (2002). Acceleration of crystallisation of palm kernel oil in oil-in-water emulsion by hydrophobic emulsifier additives. Colloids and Surfaces B: Biointerfaces, 25(1), 45-53. doi:10.1016/s0927-7765(01)00298-3 es_ES
dc.description.references Benedito, J., Mulet, A., Velasco, J., & Dobarganes, M. C. (2002). Ultrasonic Assessment of Oil Quality during Frying. Journal of Agricultural and Food Chemistry, 50(16), 4531-4536. doi:10.1021/jf020230s es_ES
dc.description.references Cárcel, J. A., Benedito, J., Bon, J., & Mulet, A. (2007). High intensity ultrasound effects on meat brining. Meat Science, 76(4), 611-619. doi:10.1016/j.meatsci.2007.01.022 es_ES
dc.description.references De Prados, M., García-Pérez, J. V., & Benedito, J. (2015). Non-destructive salt content prediction in brined pork meat using ultrasound technology. Journal of Food Engineering, 154, 39-48. doi:10.1016/j.jfoodeng.2014.12.024 es_ES
dc.description.references De Prados, M., Garcia-Perez, J. V., & Benedito, J. (2016). Ultrasonic characterization and online monitoring of pork meat dry salting process. Food Control, 60, 646-655. doi:10.1016/j.foodcont.2015.09.009 es_ES
dc.description.references Dixit, Y., Casado-Gavalda, M. P., Cama-Moncunill, R., Cama-Moncunill, X., Markiewicz-Keszycka, M., Cullen, P. J., & Sullivan, C. (2017). Developments and Challenges in Online NIR Spectroscopy for Meat Processing. Comprehensive Reviews in Food Science and Food Safety, 16(6), 1172-1187. doi:10.1111/1541-4337.12295 es_ES
dc.description.references Koc, A. B., & Ozer, B. (2008). Nondestructive monitoring of renetted whole milk during cheese manufacturing. Food Research International, 41(7), 745-750. doi:10.1016/j.foodres.2008.05.008 es_ES
dc.description.references Koksel, F., Strybulevych, A., Page, J. H., & Scanlon, M. G. (2014). Ultrasonic Characterization of Unyeasted Bread Dough of Different Sodium Chloride Concentrations. Cereal Chemistry Journal, 91(4), 327-332. doi:10.1094/cchem-10-13-0206-cesi es_ES
dc.description.references Koksel, F., Strybulevych, A., Page, J. H., & Scanlon, M. G. (2017). Ultrasonic investigation of the effects of composition on the volume fraction of bubbles and changes in their relative sizes in non-yeasted gluten-starch blend doughs. Journal of Food Engineering, 204, 1-7. doi:10.1016/j.jfoodeng.2017.01.027 es_ES
dc.description.references Leemans, V., & Destain, M.-F. (2009). Ultrasonic internal defect detection in cheese. Journal of Food Engineering, 90(3), 333-340. doi:10.1016/j.jfoodeng.2008.06.042 es_ES
dc.description.references Nowak, K. W., & Markowski, M. (2013). A comparison of methods for the determination of sound velocity in biological materials: A case study. Ultrasonics, 53(5), 923-927. doi:10.1016/j.ultras.2013.01.009 es_ES
dc.description.references Nowak, K. W., Markowski, M., & Daszkiewicz, T. (2015). Ultrasonic determination of mechanical properties of meat products. Journal of Food Engineering, 147, 49-55. doi:10.1016/j.jfoodeng.2014.09.024 es_ES
dc.description.references Nowak, K. W., Markowski, M., & Daszkiewicz, T. (2016). A modified ultrasonic method for determining the chemical composition of meat products. Journal of Food Engineering, 180, 10-15. doi:10.1016/j.jfoodeng.2016.02.010 es_ES
dc.description.references Pallav, P., Hutchins, D. A., & Gan, T. . (2009). Air-coupled ultrasonic evaluation of food materials. Ultrasonics, 49(2), 244-253. doi:10.1016/j.ultras.2008.09.002 es_ES
dc.description.references Pérez-Santaescolástica, C., Fraeye, I., Barba, F. J., Gómez, B., Tomasevic, I., Romero, A., … Lorenzo, J. M. (2019). Application of non-invasive technologies in dry-cured ham: An overview. Trends in Food Science & Technology, 86, 360-374. doi:10.1016/j.tifs.2019.02.011 es_ES
dc.description.references Pialucha, T., Guyott, C. C. H., & Cawley, P. (1989). Amplitude spectrum method for the measurement of phase velocity. Ultrasonics, 27(5), 270-279. doi:10.1016/0041-624x(89)90068-1 es_ES
dc.description.references Resa, P., Elvira, L., Montero de Espinosa, F., González, R., & Barcenilla, J. (2008). On-line ultrasonic velocity monitoring of alcoholic fermentation kinetics. Bioprocess and Biosystems Engineering, 32(3), 321-331. doi:10.1007/s00449-008-0251-3 es_ES
dc.description.references Sachse, W., & Pao, Y. (1978). On the determination of phase and group velocities of dispersive waves in solids. Journal of Applied Physics, 49(8), 4320-4327. doi:10.1063/1.325484 es_ES
dc.description.references Sarabia, E., Llata, J., Robla, S., Torre-Ferrero, C., & Oria, J. (2013). Accurate Estimation of Airborne Ultrasonic Time-of-Flight for Overlapping Echoes. Sensors, 13(11), 15465-15488. doi:10.3390/s131115465 es_ES
dc.description.references Svilainis, L. (2016). Review of Ultrasonic Signal Acquisition and Processing Techniques for Mechatronics and Material Engineering. Solid State Phenomena, 251, 68-74. doi:10.4028/www.scientific.net/ssp.251.68 es_ES
dc.description.references Ting, C.-H., Kuo, F.-J., Lien, C.-C., & Sheng, C.-T. (2009). Use of ultrasound for characterising the gelation process in heat induced tofu curd. Journal of Food Engineering, 93(1), 101-107. doi:10.1016/j.jfoodeng.2009.01.015 es_ES
dc.description.references Valente, M., Prades, A., & Laux, D. (2013). Potential use of physical measurements including ultrasound for a better mango fruit quality characterization. Journal of Food Engineering, 116(1), 57-64. doi:10.1016/j.jfoodeng.2012.11.022 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem