- -

Full probabilistic solution of a finite dimensional linear control system with random initial and final conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Full probabilistic solution of a finite dimensional linear control system with random initial and final conditions

Mostrar el registro completo del ítem

Cortés, J.; Navarro-Quiles, A.; Romero, J.; Roselló, M.; Zuazua, E. (2020). Full probabilistic solution of a finite dimensional linear control system with random initial and final conditions. Journal of the Franklin Institute. 357(12):8156-8180. https://doi.org/10.1016/j.jfranklin.2020.06.005

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160837

Ficheros en el ítem

Metadatos del ítem

Título: Full probabilistic solution of a finite dimensional linear control system with random initial and final conditions
Autor: Cortés, J.-C. Navarro-Quiles, A. Romero, José-Vicente Roselló, María-Dolores Zuazua, Enrique
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] In this paper we perform a complete probabilistic study of a finite dimensional linear control system with uncertainty. The controllability condition with random initial data and final target is analysed. To conduct ...[+]
Palabras clave: Differential-Equations , Greedy controllability , Stochastic-Systems , Stability
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Journal of the Franklin Institute. (issn: 0016-0032 )
DOI: 10.1016/j.jfranklin.2020.06.005
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jfranklin.2020.06.005
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/694126/EU/Dynamic Control and Numerics of Partial Differential Equations/
...[+]
info:eu-repo/grantAgreement/EC/H2020/694126/EU/Dynamic Control and Numerics of Partial Differential Equations/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/
info:eu-repo/grantAgreement/EC/H2020/765579/EU/Control of flexible structures and fluid-structure interactions/
info:eu-repo/grantAgreement/ANR//ANR-16-ACHN-0014/FR/Interactions of Control, Partial Differential Equations and Numerics/ICON/
info:eu-repo/grantAgreement/AEI//MTM2017-92996-P/
info:eu-repo/grantAgreement/Eusko Jaurlaritza//KK-2018%2F00083/
info:eu-repo/grantAgreement/AFOSR//FA9550-18-1-0242/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F128/
[-]
Agradecimientos:
This work has been partially supported by the European Research Council (ERC) under the European Unions’s Horizon 2020 research and innovation programme (Grant agreement no. 694126-DyCon) and the Ministerio de Economía y ...[+]
Tipo: Artículo

References

Zuazua, E. (2007). Controllability and Observability of Partial Differential Equations: Some Results and Open Problems. Handbook of Differential Equations: Evolutionary Equations, 527-621. doi:10.1016/s1874-5717(07)80010-7

Wu, L., Gao, Y., Liu, J., & Li, H. (2017). Event-triggered sliding mode control of stochastic systems via output feedback. Automatica, 82, 79-92. doi:10.1016/j.automatica.2017.04.032

Li, X., Zhu, Q., & O׳Regan, D. (2014). pth Moment exponential stability of impulsive stochastic functional differential equations and application to control problems of NNs. Journal of the Franklin Institute, 351(9), 4435-4456. doi:10.1016/j.jfranklin.2014.04.008 [+]
Zuazua, E. (2007). Controllability and Observability of Partial Differential Equations: Some Results and Open Problems. Handbook of Differential Equations: Evolutionary Equations, 527-621. doi:10.1016/s1874-5717(07)80010-7

Wu, L., Gao, Y., Liu, J., & Li, H. (2017). Event-triggered sliding mode control of stochastic systems via output feedback. Automatica, 82, 79-92. doi:10.1016/j.automatica.2017.04.032

Li, X., Zhu, Q., & O׳Regan, D. (2014). pth Moment exponential stability of impulsive stochastic functional differential equations and application to control problems of NNs. Journal of the Franklin Institute, 351(9), 4435-4456. doi:10.1016/j.jfranklin.2014.04.008

Shaikhet, L. (2009). Improved condition for stabilization of controlled inverted pendulum under stochastic perturbations. Discrete & Continuous Dynamical Systems - A, 24(4), 1335-1343. doi:10.3934/dcds.2009.24.1335

Deori, L., Garatti, S., & Prandini, M. (2017). Trading performance for state constraint feasibility in stochastic constrained control: A randomized approach. Journal of the Franklin Institute, 354(1), 501-529. doi:10.1016/j.jfranklin.2016.10.019

Song, J., Niu, Y., & Wang, S. (2017). Robust finite-time dissipative control subject to randomly occurring uncertainties and stochastic fading measurements. Journal of the Franklin Institute, 354(9), 3706-3723. doi:10.1016/j.jfranklin.2016.07.020

Vargas, A. N., Caruntu, C. F., & Ishihara, J. Y. (2019). Stability of switching linear systems with switching signals driven by stochastic processes. Journal of the Franklin Institute, 356(1), 31-41. doi:10.1016/j.jfranklin.2018.09.029

Dragan, V., Aberkane, S., & Popa, I.-L. (2015). Optimal <mml:math altimg=«si0002.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd» xmlns:sa=«http://www.elsevier.com/xml/common/struct-aff/dtd»><mml:msub><mml:mrow><mml:mi mathvariant=«script»>H</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math> filtering for periodic linear stochastic systems with multiplicative white noise perturbations and sampled measurements. Journal of the Franklin Institute, 352(12), 5985-6010. doi:10.1016/j.jfranklin.2015.10.010

Zuazua, E. (2014). Averaged control. Automatica, 50(12), 3077-3087. doi:10.1016/j.automatica.2014.10.054

Lazar, M., & Zuazua, E. (2014). Averaged control and observation of parameter-depending wave equations. Comptes Rendus Mathematique, 352(6), 497-502. doi:10.1016/j.crma.2014.04.007

Coulson, J., Gharesifard, B., & Mansouri, A.-R. (2019). On average controllability of random heat equations with arbitrarily distributed diffusivity. Automatica, 103, 46-52. doi:10.1016/j.automatica.2019.01.014

Lazar, M., & Zuazua, E. (2016). Greedy controllability of finite dimensional linear systems. Automatica, 74, 327-340. doi:10.1016/j.automatica.2016.08.010

Fabrini, G., Iapichino, L., & Volkwein, S. (2018). Reduced-Order Greedy Controllability of Finite Dimensional Linear Systems. IFAC-PapersOnLine, 51(2), 296-301. doi:10.1016/j.ifacol.2018.03.051

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem