Zuazua, E. (2007). Controllability and Observability of Partial Differential Equations: Some Results and Open Problems. Handbook of Differential Equations: Evolutionary Equations, 527-621. doi:10.1016/s1874-5717(07)80010-7
Wu, L., Gao, Y., Liu, J., & Li, H. (2017). Event-triggered sliding mode control of stochastic systems via output feedback. Automatica, 82, 79-92. doi:10.1016/j.automatica.2017.04.032
Li, X., Zhu, Q., & O׳Regan, D. (2014). pth Moment exponential stability of impulsive stochastic functional differential equations and application to control problems of NNs. Journal of the Franklin Institute, 351(9), 4435-4456. doi:10.1016/j.jfranklin.2014.04.008
[+]
Zuazua, E. (2007). Controllability and Observability of Partial Differential Equations: Some Results and Open Problems. Handbook of Differential Equations: Evolutionary Equations, 527-621. doi:10.1016/s1874-5717(07)80010-7
Wu, L., Gao, Y., Liu, J., & Li, H. (2017). Event-triggered sliding mode control of stochastic systems via output feedback. Automatica, 82, 79-92. doi:10.1016/j.automatica.2017.04.032
Li, X., Zhu, Q., & O׳Regan, D. (2014). pth Moment exponential stability of impulsive stochastic functional differential equations and application to control problems of NNs. Journal of the Franklin Institute, 351(9), 4435-4456. doi:10.1016/j.jfranklin.2014.04.008
Shaikhet, L. (2009). Improved condition for stabilization of controlled inverted
pendulum under stochastic perturbations. Discrete & Continuous Dynamical Systems - A, 24(4), 1335-1343. doi:10.3934/dcds.2009.24.1335
Deori, L., Garatti, S., & Prandini, M. (2017). Trading performance for state constraint feasibility in stochastic constrained control: A randomized approach. Journal of the Franklin Institute, 354(1), 501-529. doi:10.1016/j.jfranklin.2016.10.019
Song, J., Niu, Y., & Wang, S. (2017). Robust finite-time dissipative control subject to randomly occurring uncertainties and stochastic fading measurements. Journal of the Franklin Institute, 354(9), 3706-3723. doi:10.1016/j.jfranklin.2016.07.020
Vargas, A. N., Caruntu, C. F., & Ishihara, J. Y. (2019). Stability of switching linear systems with switching signals driven by stochastic processes. Journal of the Franklin Institute, 356(1), 31-41. doi:10.1016/j.jfranklin.2018.09.029
Dragan, V., Aberkane, S., & Popa, I.-L. (2015). Optimal <mml:math altimg=«si0002.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd» xmlns:sa=«http://www.elsevier.com/xml/common/struct-aff/dtd»><mml:msub><mml:mrow><mml:mi mathvariant=«script»>H</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math> filtering for periodic linear stochastic systems with multiplicative white noise perturbations and sampled measurements. Journal of the Franklin Institute, 352(12), 5985-6010. doi:10.1016/j.jfranklin.2015.10.010
Zuazua, E. (2014). Averaged control. Automatica, 50(12), 3077-3087. doi:10.1016/j.automatica.2014.10.054
Lazar, M., & Zuazua, E. (2014). Averaged control and observation of parameter-depending wave equations. Comptes Rendus Mathematique, 352(6), 497-502. doi:10.1016/j.crma.2014.04.007
Coulson, J., Gharesifard, B., & Mansouri, A.-R. (2019). On average controllability of random heat equations with arbitrarily distributed diffusivity. Automatica, 103, 46-52. doi:10.1016/j.automatica.2019.01.014
Lazar, M., & Zuazua, E. (2016). Greedy controllability of finite dimensional linear systems. Automatica, 74, 327-340. doi:10.1016/j.automatica.2016.08.010
Fabrini, G., Iapichino, L., & Volkwein, S. (2018). Reduced-Order Greedy Controllability of Finite Dimensional Linear Systems. IFAC-PapersOnLine, 51(2), 296-301. doi:10.1016/j.ifacol.2018.03.051
[-]