Mostrar el registro sencillo del ítem
dc.contributor.author | Fornes Sebastiá, Fernando | es_ES |
dc.contributor.author | Liu-Xu, Luisa | es_ES |
dc.contributor.author | Lidón, Antonio | es_ES |
dc.contributor.author | Sanchez-Garcia, Maria | es_ES |
dc.contributor.author | Luz Cayuela, Maria | es_ES |
dc.contributor.author | Sanchez-Monedero, Miguel A. | es_ES |
dc.contributor.author | Belda Navarro, Rosa María | es_ES |
dc.date.accessioned | 2021-02-06T04:34:05Z | |
dc.date.available | 2021-02-06T04:34:05Z | |
dc.date.issued | 2020-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160843 | |
dc.description.abstract | [EN] Compost represents a sustainable alternative for peat (P) replacement in soilless plant cultivation, but its use can be limited by several inadequate physical and physicochemical properties. Biochar can alleviate some of the limitations of compost for its use as growth media by improving the physical properties, decreasing salinity and making the phytotoxic compounds unavailable for plants. We studied the physical and physicochemical properties of holm oak biochar (B), poultry manure compost (PMC), poultry manure composted with biochar (PMBC), a commercial peat (P) and multiple combinations of these materials as growth media, and their effect on the rooting and growth of rosemary. PMBC and PMC showed similar physical and physicochemical properties as growing media, and they both were phytotoxic when used in a rate above 50% (by volume) in the growing medium. However, when used at proportion of 25%, PMBC was less phytotoxic than PMC and enhanced the percentage of rosemary cutting rooting. The incorporation of B in the growing medium instead of P (either at 50% or 75% in volume) increased the stability of the growing media and the percentage of rooted cuttings, but it did not affect plant growth significantly. Our results demonstrate the potential of substituting peat by a combination of poultry manure compost and biochar for the formulation of growth media. | es_ES |
dc.description.sponsorship | This research was funded by SPANISH MINISTRY OF ECONOMY AND COMPETITIVENESS, grant numbers AGL2012-40143-C02-01 and RTI2018-099417-B-I00, co-funded with EU FEDER funds | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Agronomy | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Biochar | es_ES |
dc.subject | Growth media | es_ES |
dc.subject | Manure reclaim | es_ES |
dc.subject | Peat alternatives | es_ES |
dc.subject | Phytotoxicity alleviation | es_ES |
dc.subject | Rooting media | es_ES |
dc.subject | Rosmarinus officinalis | es_ES |
dc.subject.classification | FISIOLOGIA VEGETAL | es_ES |
dc.subject.classification | EDAFOLOGIA Y QUIMICA AGRICOLA | es_ES |
dc.title | Biochar Improves the Properties of Poultry Manure Compost as Growing Media for Rosemary Production | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/agronomy10020261 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2012-40143-C02-01/ES/EVALACION AGRICOLA Y AMBIENTAL DEL USO DE BIOCHAR EN EL COMPOSTAJE DE RESIDUOS ORGANICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099417-B-I00/ES/OPTIMIZACION DE LAS PROPIEDADES REDOX DE BIOCHARS PARA DISMINUIR LAS EMISIONES DE GASES DE EFECTO INVERNADERO Y FAVORECER LA DEGRADACION DE CONTAMINANTES EMERGENTES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Fornes Sebastiá, F.; Liu-Xu, L.; Lidón, A.; Sanchez-Garcia, M.; Luz Cayuela, M.; Sanchez-Monedero, MA.; Belda Navarro, RM. (2020). Biochar Improves the Properties of Poultry Manure Compost as Growing Media for Rosemary Production. Agronomy. 10(2):1-16. https://doi.org/10.3390/agronomy10020261 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/agronomy10020261 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 2073-4395 | es_ES |
dc.relation.pasarela | S\402933 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | KERN, J., TAMMEORG, P., SHANSKIY, M., SAKRABANI, R., KNICKER, H., KAMMANN, C., … GLASER, B. (2017). SYNERGISTIC USE OF PEAT AND CHARRED MATERIAL IN GROWING MEDIA – AN OPTION TO REDUCE THE PRESSURE ON PEATLANDS? Journal of Environmental Engineering and Landscape Management, 25(2), 160-174. doi:10.3846/16486897.2017.1284665 | es_ES |
dc.description.references | Tiemeyer, B., Albiac Borraz, E., Augustin, J., Bechtold, M., Beetz, S., Beyer, C., … Zeitz, J. (2016). High emissions of greenhouse gases from grasslands on peat and other organic soils. Global Change Biology, 22(12), 4134-4149. doi:10.1111/gcb.13303 | es_ES |
dc.description.references | Raviv, M. (2005). Production of High-quality Composts for Horticultural Purposes: A Mini-review. HortTechnology, 15(1), 52-57. doi:10.21273/horttech.15.1.0052 | es_ES |
dc.description.references | GARCIADELAFUENTE, R., CARRION, C., BOTELLA, S., FORNES, F., NOGUERA, V., & ABAD, M. (2007). Biological oxidation of elemental sulphur added to three composts from different feedstocks to reduce their pH for horticultural purposes. Bioresource Technology, 98(18), 3561-3569. doi:10.1016/j.biortech.2006.11.008 | es_ES |
dc.description.references | Alburquerque, J. A., Gonzálvez, J., García, D., & Cegarra, J. (2006). Measuring detoxification and maturity in compost made from «alperujo», the solid by-product of extracting olive oil by the two-phase centrifugation system. Chemosphere, 64(3), 470-477. doi:10.1016/j.chemosphere.2005.10.055 | es_ES |
dc.description.references | Wang, P., Changa, C. M., Watson, M. E., Dick, W. A., Chen, Y., & Hoitink, H. A. J. (2004). Maturity indices for composted dairy and pig manures. Soil Biology and Biochemistry, 36(5), 767-776. doi:10.1016/j.soilbio.2003.12.012 | es_ES |
dc.description.references | Sáez, J. A., Belda, R. M., Bernal, M. P., & Fornes, F. (2016). Biochar improves agro-environmental aspects of pig slurry compost as a substrate for crops with energy and remediation uses. Industrial Crops and Products, 94, 97-106. doi:10.1016/j.indcrop.2016.08.035 | es_ES |
dc.description.references | Kelleher, B. ., Leahy, J. ., Henihan, A. ., O’Dwyer, T. ., Sutton, D., & Leahy, M. . (2002). Advances in poultry litter disposal technology – a review. Bioresource Technology, 83(1), 27-36. doi:10.1016/s0960-8524(01)00133-x | es_ES |
dc.description.references | Atiyeh, R. M., Subler, S., Edwards, C. A., Bachman, G., Metzger, J. D., & Shuster, W. (2000). Effects of vermicomposts and composts on plant growth in horticultural container media and soil. Pedobiologia, 44(5), 579-590. doi:10.1078/s0031-4056(04)70073-6 | es_ES |
dc.description.references | Steiner, C., & Harttung, T. (2014). Biochar as a growing media additive and peat substitute. Solid Earth, 5(2), 995-999. doi:10.5194/se-5-995-2014 | es_ES |
dc.description.references | Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., & Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communications, 1(1). doi:10.1038/ncomms1053 | es_ES |
dc.description.references | Fornes, F., & Belda, R. M. (2018). Biochar versus hydrochar as growth media constituents for ornamental plant cultivation. Scientia Agricola, 75(4), 304-312. doi:10.1590/1678-992x-2017-0062 | es_ES |
dc.description.references | Tian, Y., Sun, X., Li, S., Wang, H., Wang, L., Cao, J., & Zhang, L. (2012). Biochar made from green waste as peat substitute in growth media for Calathea rotundifola cv. Fasciata. Scientia Horticulturae, 143, 15-18. doi:10.1016/j.scienta.2012.05.018 | es_ES |
dc.description.references | Fornes, F., Belda, R. M., Fernández de Córdova, P., & Cebolla-Cornejo, J. (2017). Assessment of biochar and hydrochar as minor to major constituents of growing media for containerized tomato production. Journal of the Science of Food and Agriculture, 97(11), 3675-3684. doi:10.1002/jsfa.8227 | es_ES |
dc.description.references | Petruccelli, R., Bonetti, A., Traversi, M. L., Faraloni, C., Valagussa, M., & Pozzi, A. (2015). Influence of biochar application on nutritional quality of tomato (Lycopersicon esculentum). Crop and Pasture Science, 66(7), 747. doi:10.1071/cp14247 | es_ES |
dc.description.references | Belda, R. M., Lidón, A., & Fornes, F. (2016). Biochars and hydrochars as substrate constituents for soilless growth of myrtle and mastic. Industrial Crops and Products, 94, 132-142. doi:10.1016/j.indcrop.2016.08.024 | es_ES |
dc.description.references | Fornes, F., & Belda, R. M. (2019). Use of raw and acidified biochars as constituents of growth media for forest seedling production. New Forests, 50(6), 1063-1086. doi:10.1007/s11056-019-09715-y | es_ES |
dc.description.references | Huang, L., Niu, G., Feagley, S. E., & Gu, M. (2019). Evaluation of a hardwood biochar and two composts mixes as replacements for a peat-based commercial substrate. Industrial Crops and Products, 129, 549-560. doi:10.1016/j.indcrop.2018.12.044 | es_ES |
dc.description.references | Alvarez, J. M., Pasian, C., Lal, R., Lapez, R., & Ferna¡ndez, M. (2017). Vermicompost and biochar as substitutes of growing media in ornamental-plant production. Journal of Applied Horticulture, 19(03), 205-214. doi:10.37855/jah.2017.v19i03.37 | es_ES |
dc.description.references | Steiner, C., Das, K. C., Melear, N., & Lakly, D. (2010). Reducing Nitrogen Loss during Poultry Litter Composting Using Biochar. Journal of Environmental Quality, 39(4), 1236-1242. doi:10.2134/jeq2009.0337 | es_ES |
dc.description.references | Wang, C., Lu, H., Dong, D., Deng, H., Strong, P. J., Wang, H., & Wu, W. (2013). Insight into the Effects of Biochar on Manure Composting: Evidence Supporting the Relationship between N2O Emission and Denitrifying Community. Environmental Science & Technology, 47(13), 7341-7349. doi:10.1021/es305293h | es_ES |
dc.description.references | Wang, Y., Villamil, M. B., Davidson, P. C., & Akdeniz, N. (2019). A quantitative understanding of the role of co-composted biochar in plant growth using meta-analysis. Science of The Total Environment, 685, 741-752. doi:10.1016/j.scitotenv.2019.06.244 | es_ES |
dc.description.references | Sánchez-García, M., Alburquerque, J. A., Sánchez-Monedero, M. A., Roig, A., & Cayuela, M. L. (2015). Biochar accelerates organic matter degradation and enhances N mineralisation during composting of poultry manure without a relevant impact on gas emissions. Bioresource Technology, 192, 272-279. doi:10.1016/j.biortech.2015.05.003 | es_ES |
dc.description.references | Maroušek, J., Hašková, S., Zeman, R., Žák, J., Vaníčková, R., Maroušková, A., … Myšková, K. (2015). Polemics on Ethical Aspects in the Compost Business. Science and Engineering Ethics, 22(2), 581-590. doi:10.1007/s11948-015-9664-y | es_ES |
dc.description.references | Abad, M., Fornes, F., Carrión, C., Noguera, V., Noguera, P., Maquieira, A., & Puchades, R. (2005). Physical Properties of Various Coconut Coir Dusts Compared to Peat. HortScience, 40(7), 2138-2144. doi:10.21273/hortsci.40.7.2138 | es_ES |
dc.description.references | Laird, D., Fleming, P., Wang, B., Horton, R., & Karlen, D. (2010). Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158(3-4), 436-442. doi:10.1016/j.geoderma.2010.05.012 | es_ES |
dc.description.references | Jaiswal, A. K., Elad, Y., Paudel, I., Graber, E. R., Cytryn, E., & Frenkel, O. (2017). Linking the Belowground Microbial Composition, Diversity and Activity to Soilborne Disease Suppression and Growth Promotion of Tomato Amended with Biochar. Scientific Reports, 7(1). doi:10.1038/srep44382 | es_ES |
dc.description.references | Elad, Y., David, D. R., Harel, Y. M., Borenshtein, M., Kalifa, H. B., Silber, A., & Graber, E. R. (2010). Induction of Systemic Resistance in Plants by Biochar, a Soil-Applied Carbon Sequestering Agent. Phytopathology®, 100(9), 913-921. doi:10.1094/phyto-100-9-0913 | es_ES |
dc.description.references | Graber, E. R., Meller Harel, Y., Kolton, M., Cytryn, E., Silber, A., Rav David, D., … Elad, Y. (2010). Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil, 337(1-2), 481-496. doi:10.1007/s11104-010-0544-6 | es_ES |
dc.description.references | Fornes, F., Belda, R. M., & Lidón, A. (2015). Analysis of two biochars and one hydrochar from different feedstock: focus set on environmental, nutritional and horticultural considerations. Journal of Cleaner Production, 86, 40-48. doi:10.1016/j.jclepro.2014.08.057 | es_ES |
dc.description.references | Fornes, F., Belda, R. M., Carrión, C., Noguera, V., García-Agustín, P., & Abad, M. (2007). Pre-conditioning ornamental plants to drought by means of saline water irrigation as related to salinity tolerance. Scientia Horticulturae, 113(1), 52-59. doi:10.1016/j.scienta.2007.01.008 | es_ES |
dc.description.references | Moran, R. (1982). Formulae for Determination of Chlorophyllous Pigments Extracted with N,N-Dimethylformamide. Plant Physiology, 69(6), 1376-1381. doi:10.1104/pp.69.6.1376 | es_ES |
dc.description.references | Mendoza-Hernández, D., Fornes, F., & Belda, R. M. (2014). Compost and vermicompost of horticultural waste as substrates for cutting rooting and growth of rosemary. Scientia Horticulturae, 178, 192-202. doi:10.1016/j.scienta.2014.08.024 | es_ES |
dc.description.references | Fornes, F., Mendoza-Hernandez, D., & Belda, R. M. (2013). Compost versus vermicompost as substrate constituents for rooting shrub cuttings. Spanish Journal of Agricultural Research, 11(2), 518. doi:10.5424/sjar/2013112-3304 | es_ES |
dc.description.references | Esteban, R., Ariz, I., Cruz, C., & Moran, J. F. (2016). Review: Mechanisms of ammonium toxicity and the quest for tolerance. Plant Science, 248, 92-101. doi:10.1016/j.plantsci.2016.04.008 | es_ES |
dc.description.references | Domínguez-Valdivia, M. D., Aparicio-Tejo, P. M., Lamsfus, C., Cruz, C., Martins-Loução, M. A., & Moran, J. F. (2008). Nitrogen nutrition and antioxidant metabolism in ammonium-tolerant and -sensitive plants. Physiologia Plantarum, 132(3), 359-369. doi:10.1111/j.1399-3054.2007.01022.x | es_ES |
dc.description.references | Britto, D. T., & Kronzucker, H. J. (2002). NH4+ toxicity in higher plants: a critical review. Journal of Plant Physiology, 159(6), 567-584. doi:10.1078/0176-1617-0774 | es_ES |
dc.description.references | Fornes, F., Carrión, C., García-de-la-Fuente, R., Puchades, R., & Abad, M. (2010). Leaching composted lignocellulosic wastes to prepare container media: Feasibility and environmental concerns. Journal of Environmental Management, 91(8), 1747-1755. doi:10.1016/j.jenvman.2010.03.017 | es_ES |