Mostrar el registro sencillo del ítem
dc.contributor.author | Trull, Óscar | es_ES |
dc.contributor.author | García-Díaz, J. Carlos | es_ES |
dc.contributor.author | Troncoso, Alicia | es_ES |
dc.date.accessioned | 2021-02-09T04:31:48Z | |
dc.date.available | 2021-02-09T04:31:48Z | |
dc.date.issued | 2020-04 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160899 | |
dc.description.abstract | [EN] Electricity management and production depend heavily on demand forecasts made. Any mismatch between the energy demanded with respect to that produced supposes enormous losses for the consumer. Transmission System Operators use time series-based tools to forecast accurately the future demand and set the production program. One of the most effective and highly used methods are Holt-Winters. Recently, the incorporation of the multiple seasonal Holt-Winters methods has improved the accuracy of the predictions. These forecasts, depend greatly on the parameters with which the model is constructed. The forecasters need to deal with these parameters values when operating the model. In this article, the parameters space of the multiple seasonal Holt-Winters models applied to electricity demand in Spain is analysed and discussed. The parameters stability analysis leads to forecasters better understanding the behaviour of the predictions and managing their exploitation efficiently. The analysis addresses different time windows, depending on the period of the year as well as different training set sizes. The results show the influence of the calendar effect on these parameters and if it is necessary or not to update them in order to obtain a good accuracy over time. | es_ES |
dc.description.sponsorship | The authors would like to thank the Spanish Ministry of Economy and Competitiveness for the support under project TIN2017-8888209C2-1-R. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Time series | es_ES |
dc.subject | Forecasting | es_ES |
dc.subject | Exponential smoothing | es_ES |
dc.subject | Electricity demand | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Stability of Multiple Seasonal Holt-Winters Models Applied to Hourly Electricity Demand in Spain | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app10072630 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-88209-C2-1-R/ES/BIG DATA STREAMING: ANALISIS DE DATOS MASIVOS CONTINUOS. MODELOS PREDICTIVOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Trull, Ó.; García-Díaz, JC.; Troncoso, A. (2020). Stability of Multiple Seasonal Holt-Winters Models Applied to Hourly Electricity Demand in Spain. Applied Sciences. 10(7):1-16. https://doi.org/10.3390/app10072630 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app10072630 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 7 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\412895 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Hobbs, B. F., Jitprapaikulsarn, S., Konda, S., Chankong, V., Loparo, K. A., & Maratukulam, D. J. (1999). Analysis of the value for unit commitment of improved load forecasts. IEEE Transactions on Power Systems, 14(4), 1342-1348. doi:10.1109/59.801894 | es_ES |
dc.description.references | Weron, R. (2014). Electricity price forecasting: A review of the state-of-the-art with a look into the future. International Journal of Forecasting, 30(4), 1030-1081. doi:10.1016/j.ijforecast.2014.08.008 | es_ES |
dc.description.references | Lora, A. T., Santos, J. M. R., Exposito, A. G., Ramos, J. L. M., & Santos, J. C. R. (2007). Electricity Market Price Forecasting Based on Weighted Nearest Neighbors Techniques. IEEE Transactions on Power Systems, 22(3), 1294-1301. doi:10.1109/tpwrs.2007.901670 | es_ES |
dc.description.references | Chatfield, C., & Yar, M. (1988). Holt-Winters Forecasting: Some Practical Issues. The Statistician, 37(2), 129. doi:10.2307/2348687 | es_ES |
dc.description.references | Gardner, E. S. (2006). Exponential smoothing: The state of the art—Part II. International Journal of Forecasting, 22(4), 637-666. doi:10.1016/j.ijforecast.2006.03.005 | es_ES |
dc.description.references | Taylor, J. W. (2003). Short-term electricity demand forecasting using double seasonal exponential smoothing. Journal of the Operational Research Society, 54(8), 799-805. doi:10.1057/palgrave.jors.2601589 | es_ES |
dc.description.references | Taylor, J. W. (2010). Triple seasonal methods for short-term electricity demand forecasting. European Journal of Operational Research, 204(1), 139-152. doi:10.1016/j.ejor.2009.10.003 | es_ES |
dc.description.references | Taylor, J. W. (2008). An evaluation of methods for very short-term load forecasting using minute-by-minute British data. International Journal of Forecasting, 24(4), 645-658. doi:10.1016/j.ijforecast.2008.07.007 | es_ES |
dc.description.references | Taylor, J. W., & Espasa, A. (2008). Energy forecasting. International Journal of Forecasting, 24(4), 561-565. doi:10.1016/j.ijforecast.2008.08.001 | es_ES |
dc.description.references | Trull, O., García-Díaz, J. C., & Troncoso, A. (2020). Initialization Methods for Multiple Seasonal Holt–Winters Forecasting Models. Mathematics, 8(2), 268. doi:10.3390/math8020268 | es_ES |
dc.description.references | Trull, Ó., García-Díaz, J., & Troncoso, A. (2019). Application of Discrete-Interval Moving Seasonalities to Spanish Electricity Demand Forecasting during Easter. Energies, 12(6), 1083. doi:10.3390/en12061083 | es_ES |
dc.description.references | López, M., Sans, C., Valero, S., & Senabre, C. (2019). Classification of Special Days in Short-Term Load Forecasting: The Spanish Case Study. Energies, 12(7), 1253. doi:10.3390/en12071253 | es_ES |
dc.description.references | Arora, S., & Taylor, J. W. (2013). Short-Term Forecasting of Anomalous Load Using Rule-Based Triple Seasonal Methods. IEEE Transactions on Power Systems, 28(3), 3235-3242. doi:10.1109/tpwrs.2013.2252929 | es_ES |
dc.description.references | Roldan-Fernandez, J., Gómez-Quiles, C., Merre, A., Burgos-Payán, M., & Riquelme-Santos, J. (2018). Cross-Border Energy Exchange and Renewable Premiums: The Case of the Iberian System. Energies, 11(12), 3277. doi:10.3390/en11123277 | es_ES |
dc.description.references | Domínguez, E. F., & Bernat, J. X. (2007). Restructuring and generation of electrical energy in the Iberian Peninsula. Energy Policy, 35(10), 5117-5129. doi:10.1016/j.enpol.2007.04.028 | es_ES |
dc.description.references | Cancelo, J. R., Espasa, A., & Grafe, R. (2008). Forecasting the electricity load from one day to one week ahead for the Spanish system operator. International Journal of Forecasting, 24(4), 588-602. doi:10.1016/j.ijforecast.2008.07.005 | es_ES |
dc.description.references | Talavera-Llames, R., Pérez-Chacón, R., Troncoso, A., & Martínez-Álvarez, F. (2018). Big data time series forecasting based on nearest neighbours distributed computing with Spark. Knowledge-Based Systems, 161, 12-25. doi:10.1016/j.knosys.2018.07.026 | es_ES |
dc.description.references | Bedi, J., & Toshniwal, D. (2019). Deep learning framework to forecast electricity demand. Applied Energy, 238, 1312-1326. doi:10.1016/j.apenergy.2019.01.113 | es_ES |
dc.description.references | Torres, J. F., Troncoso, A., Koprinska, I., Wang, Z., & Martínez‐Álvarez, F. (2019). Big data solar power forecasting based on deep learning and multiple data sources. Expert Systems, 36(4). doi:10.1111/exsy.12394 | es_ES |
dc.description.references | Yang, Y., Hong, W., & Li, S. (2019). Deep ensemble learning based probabilistic load forecasting in smart grids. Energy, 189, 116324. doi:10.1016/j.energy.2019.116324 | es_ES |
dc.description.references | Galicia, A., Talavera-Llames, R., Troncoso, A., Koprinska, I., & Martínez-Álvarez, F. (2019). Multi-step forecasting for big data time series based on ensemble learning. Knowledge-Based Systems, 163, 830-841. doi:10.1016/j.knosys.2018.10.009 | es_ES |
dc.description.references | Jiang, W., Wu, X., Gong, Y., Yu, W., & Zhong, X. (2020). Holt–Winters smoothing enhanced by fruit fly optimization algorithm to forecast monthly electricity consumption. Energy, 193, 116779. doi:10.1016/j.energy.2019.116779 | es_ES |
dc.description.references | Holt, C. C. (2004). Forecasting seasonals and trends by exponentially weighted moving averages. International Journal of Forecasting, 20(1), 5-10. doi:10.1016/j.ijforecast.2003.09.015 | es_ES |
dc.description.references | Makridakis, S., & Hibon, M. (1991). Exponential smoothing: The effect of initial values and loss functions on post-sample forecasting accuracy. International Journal of Forecasting, 7(3), 317-330. doi:10.1016/0169-2070(91)90005-g | es_ES |
dc.description.references | Archibald, B. C. (1990). Parameter space of the Holt-winters’ model. International Journal of Forecasting, 6(2), 199-209. doi:10.1016/0169-2070(90)90005-v | es_ES |
dc.description.references | Lawton, R. (1998). How should additive Holt–Winters estimates be corrected? International Journal of Forecasting, 14(3), 393-403. doi:10.1016/s0169-2070(98)00040-5 | es_ES |
dc.description.references | Hyndman, R. J., Akram, M., & Archibald, B. C. (2007). The admissible parameter space for exponential smoothing models. Annals of the Institute of Statistical Mathematics, 60(2), 407-426. doi:10.1007/s10463-006-0109-x | es_ES |
dc.description.references | Bermúdez, J. D. (2013). Exponential smoothing with covariates applied to electricity demand forecast. European J. of Industrial Engineering, 7(3), 333. doi:10.1504/ejie.2013.054134 | es_ES |
dc.description.references | Troncoso Lora, A., Riquelme Santos, J. M., Riquelme, J. C., Gómez Expósito, A., & Martínez Ramos, J. L. (2004). Time-Series Prediction: Application to the Short-Term Electric Energy Demand. Lecture Notes in Computer Science, 577-586. doi:10.1007/978-3-540-25945-9_57 | es_ES |
dc.description.references | Rana, M., & Koprinska, I. (2016). Forecasting electricity load with advanced wavelet neural networks. Neurocomputing, 182, 118-132. doi:10.1016/j.neucom.2015.12.004 | es_ES |
dc.description.references | Nelder, J. A., & Mead, R. (1965). A Simplex Method for Function Minimization. The Computer Journal, 7(4), 308-313. doi:10.1093/comjnl/7.4.308 | es_ES |
dc.description.references | Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679-688. doi:10.1016/j.ijforecast.2006.03.001 | es_ES |
dc.description.references | Tofallis, C. (2015). A better measure of relative prediction accuracy for model selection and model estimation. Journal of the Operational Research Society, 66(8), 1352-1362. doi:10.1057/jors.2014.103 | es_ES |