- -

Stability of Multiple Seasonal Holt-Winters Models Applied to Hourly Electricity Demand in Spain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Stability of Multiple Seasonal Holt-Winters Models Applied to Hourly Electricity Demand in Spain

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Trull, Óscar es_ES
dc.contributor.author García-Díaz, J. Carlos es_ES
dc.contributor.author Troncoso, Alicia es_ES
dc.date.accessioned 2021-02-09T04:31:48Z
dc.date.available 2021-02-09T04:31:48Z
dc.date.issued 2020-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160899
dc.description.abstract [EN] Electricity management and production depend heavily on demand forecasts made. Any mismatch between the energy demanded with respect to that produced supposes enormous losses for the consumer. Transmission System Operators use time series-based tools to forecast accurately the future demand and set the production program. One of the most effective and highly used methods are Holt-Winters. Recently, the incorporation of the multiple seasonal Holt-Winters methods has improved the accuracy of the predictions. These forecasts, depend greatly on the parameters with which the model is constructed. The forecasters need to deal with these parameters values when operating the model. In this article, the parameters space of the multiple seasonal Holt-Winters models applied to electricity demand in Spain is analysed and discussed. The parameters stability analysis leads to forecasters better understanding the behaviour of the predictions and managing their exploitation efficiently. The analysis addresses different time windows, depending on the period of the year as well as different training set sizes. The results show the influence of the calendar effect on these parameters and if it is necessary or not to update them in order to obtain a good accuracy over time. es_ES
dc.description.sponsorship The authors would like to thank the Spanish Ministry of Economy and Competitiveness for the support under project TIN2017-8888209C2-1-R. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Time series es_ES
dc.subject Forecasting es_ES
dc.subject Exponential smoothing es_ES
dc.subject Electricity demand es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Stability of Multiple Seasonal Holt-Winters Models Applied to Hourly Electricity Demand in Spain es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app10072630 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-88209-C2-1-R/ES/BIG DATA STREAMING: ANALISIS DE DATOS MASIVOS CONTINUOS. MODELOS PREDICTIVOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Trull, Ó.; García-Díaz, JC.; Troncoso, A. (2020). Stability of Multiple Seasonal Holt-Winters Models Applied to Hourly Electricity Demand in Spain. Applied Sciences. 10(7):1-16. https://doi.org/10.3390/app10072630 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app10072630 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 7 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\412895 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Hobbs, B. F., Jitprapaikulsarn, S., Konda, S., Chankong, V., Loparo, K. A., & Maratukulam, D. J. (1999). Analysis of the value for unit commitment of improved load forecasts. IEEE Transactions on Power Systems, 14(4), 1342-1348. doi:10.1109/59.801894 es_ES
dc.description.references Weron, R. (2014). Electricity price forecasting: A review of the state-of-the-art with a look into the future. International Journal of Forecasting, 30(4), 1030-1081. doi:10.1016/j.ijforecast.2014.08.008 es_ES
dc.description.references Lora, A. T., Santos, J. M. R., Exposito, A. G., Ramos, J. L. M., & Santos, J. C. R. (2007). Electricity Market Price Forecasting Based on Weighted Nearest Neighbors Techniques. IEEE Transactions on Power Systems, 22(3), 1294-1301. doi:10.1109/tpwrs.2007.901670 es_ES
dc.description.references Chatfield, C., & Yar, M. (1988). Holt-Winters Forecasting: Some Practical Issues. The Statistician, 37(2), 129. doi:10.2307/2348687 es_ES
dc.description.references Gardner, E. S. (2006). Exponential smoothing: The state of the art—Part II. International Journal of Forecasting, 22(4), 637-666. doi:10.1016/j.ijforecast.2006.03.005 es_ES
dc.description.references Taylor, J. W. (2003). Short-term electricity demand forecasting using double seasonal exponential smoothing. Journal of the Operational Research Society, 54(8), 799-805. doi:10.1057/palgrave.jors.2601589 es_ES
dc.description.references Taylor, J. W. (2010). Triple seasonal methods for short-term electricity demand forecasting. European Journal of Operational Research, 204(1), 139-152. doi:10.1016/j.ejor.2009.10.003 es_ES
dc.description.references Taylor, J. W. (2008). An evaluation of methods for very short-term load forecasting using minute-by-minute British data. International Journal of Forecasting, 24(4), 645-658. doi:10.1016/j.ijforecast.2008.07.007 es_ES
dc.description.references Taylor, J. W., & Espasa, A. (2008). Energy forecasting. International Journal of Forecasting, 24(4), 561-565. doi:10.1016/j.ijforecast.2008.08.001 es_ES
dc.description.references Trull, O., García-Díaz, J. C., & Troncoso, A. (2020). Initialization Methods for Multiple Seasonal Holt–Winters Forecasting Models. Mathematics, 8(2), 268. doi:10.3390/math8020268 es_ES
dc.description.references Trull, Ó., García-Díaz, J., & Troncoso, A. (2019). Application of Discrete-Interval Moving Seasonalities to Spanish Electricity Demand Forecasting during Easter. Energies, 12(6), 1083. doi:10.3390/en12061083 es_ES
dc.description.references López, M., Sans, C., Valero, S., & Senabre, C. (2019). Classification of Special Days in Short-Term Load Forecasting: The Spanish Case Study. Energies, 12(7), 1253. doi:10.3390/en12071253 es_ES
dc.description.references Arora, S., & Taylor, J. W. (2013). Short-Term Forecasting of Anomalous Load Using Rule-Based Triple Seasonal Methods. IEEE Transactions on Power Systems, 28(3), 3235-3242. doi:10.1109/tpwrs.2013.2252929 es_ES
dc.description.references Roldan-Fernandez, J., Gómez-Quiles, C., Merre, A., Burgos-Payán, M., & Riquelme-Santos, J. (2018). Cross-Border Energy Exchange and Renewable Premiums: The Case of the Iberian System. Energies, 11(12), 3277. doi:10.3390/en11123277 es_ES
dc.description.references Domínguez, E. F., & Bernat, J. X. (2007). Restructuring and generation of electrical energy in the Iberian Peninsula. Energy Policy, 35(10), 5117-5129. doi:10.1016/j.enpol.2007.04.028 es_ES
dc.description.references Cancelo, J. R., Espasa, A., & Grafe, R. (2008). Forecasting the electricity load from one day to one week ahead for the Spanish system operator. International Journal of Forecasting, 24(4), 588-602. doi:10.1016/j.ijforecast.2008.07.005 es_ES
dc.description.references Talavera-Llames, R., Pérez-Chacón, R., Troncoso, A., & Martínez-Álvarez, F. (2018). Big data time series forecasting based on nearest neighbours distributed computing with Spark. Knowledge-Based Systems, 161, 12-25. doi:10.1016/j.knosys.2018.07.026 es_ES
dc.description.references Bedi, J., & Toshniwal, D. (2019). Deep learning framework to forecast electricity demand. Applied Energy, 238, 1312-1326. doi:10.1016/j.apenergy.2019.01.113 es_ES
dc.description.references Torres, J. F., Troncoso, A., Koprinska, I., Wang, Z., & Martínez‐Álvarez, F. (2019). Big data solar power forecasting based on deep learning and multiple data sources. Expert Systems, 36(4). doi:10.1111/exsy.12394 es_ES
dc.description.references Yang, Y., Hong, W., & Li, S. (2019). Deep ensemble learning based probabilistic load forecasting in smart grids. Energy, 189, 116324. doi:10.1016/j.energy.2019.116324 es_ES
dc.description.references Galicia, A., Talavera-Llames, R., Troncoso, A., Koprinska, I., & Martínez-Álvarez, F. (2019). Multi-step forecasting for big data time series based on ensemble learning. Knowledge-Based Systems, 163, 830-841. doi:10.1016/j.knosys.2018.10.009 es_ES
dc.description.references Jiang, W., Wu, X., Gong, Y., Yu, W., & Zhong, X. (2020). Holt–Winters smoothing enhanced by fruit fly optimization algorithm to forecast monthly electricity consumption. Energy, 193, 116779. doi:10.1016/j.energy.2019.116779 es_ES
dc.description.references Holt, C. C. (2004). Forecasting seasonals and trends by exponentially weighted moving averages. International Journal of Forecasting, 20(1), 5-10. doi:10.1016/j.ijforecast.2003.09.015 es_ES
dc.description.references Makridakis, S., & Hibon, M. (1991). Exponential smoothing: The effect of initial values and loss functions on post-sample forecasting accuracy. International Journal of Forecasting, 7(3), 317-330. doi:10.1016/0169-2070(91)90005-g es_ES
dc.description.references Archibald, B. C. (1990). Parameter space of the Holt-winters’ model. International Journal of Forecasting, 6(2), 199-209. doi:10.1016/0169-2070(90)90005-v es_ES
dc.description.references Lawton, R. (1998). How should additive Holt–Winters estimates be corrected? International Journal of Forecasting, 14(3), 393-403. doi:10.1016/s0169-2070(98)00040-5 es_ES
dc.description.references Hyndman, R. J., Akram, M., & Archibald, B. C. (2007). The admissible parameter space for exponential smoothing models. Annals of the Institute of Statistical Mathematics, 60(2), 407-426. doi:10.1007/s10463-006-0109-x es_ES
dc.description.references Bermúdez, J. D. (2013). Exponential smoothing with covariates applied to electricity demand forecast. European J. of Industrial Engineering, 7(3), 333. doi:10.1504/ejie.2013.054134 es_ES
dc.description.references Troncoso Lora, A., Riquelme Santos, J. M., Riquelme, J. C., Gómez Expósito, A., & Martínez Ramos, J. L. (2004). Time-Series Prediction: Application to the Short-Term Electric Energy Demand. Lecture Notes in Computer Science, 577-586. doi:10.1007/978-3-540-25945-9_57 es_ES
dc.description.references Rana, M., & Koprinska, I. (2016). Forecasting electricity load with advanced wavelet neural networks. Neurocomputing, 182, 118-132. doi:10.1016/j.neucom.2015.12.004 es_ES
dc.description.references Nelder, J. A., & Mead, R. (1965). A Simplex Method for Function Minimization. The Computer Journal, 7(4), 308-313. doi:10.1093/comjnl/7.4.308 es_ES
dc.description.references Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679-688. doi:10.1016/j.ijforecast.2006.03.001 es_ES
dc.description.references Tofallis, C. (2015). A better measure of relative prediction accuracy for model selection and model estimation. Journal of the Operational Research Society, 66(8), 1352-1362. doi:10.1057/jors.2014.103 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem