- -

Effect of fish oil replacement and probiotic addition on growth, body composition and histological parameters of yellowtail (Seriola dumerili)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of fish oil replacement and probiotic addition on growth, body composition and histological parameters of yellowtail (Seriola dumerili)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Milián-Sorribes, María Consolación es_ES
dc.contributor.author Martínez-Llorens, Silvia es_ES
dc.contributor.author Cruz-Castellón, César es_ES
dc.contributor.author Jover Cerda, Miguel es_ES
dc.contributor.author Tomas-Vidal, A. es_ES
dc.date.accessioned 2021-02-09T04:31:51Z
dc.date.available 2021-02-09T04:31:51Z
dc.date.issued 2021-02 es_ES
dc.identifier.issn 1353-5773 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160900
dc.description This is the peer reviewed version of the following article: Milián¿Sorribes, MC, Martínez¿Llorens, S, Cruz¿Castellón, C, Jover¿Cerdá, M, Tomás¿Vidal, A. Effect of fish oil replacement and probiotic addition on growth, body composition and histological parameters of yellowtail (Seriola dumerili). Aquacult Nutr 2021; 27: 3¿ 16, which has been published in final form at https://doi.org/10.1111/anu.13171. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] Fish (175 g of initial weight) were fed in triplicated groups with four diets formulated by 0% (FO 100), 75% (FO 25) and 100% (with and without probiotics, FO 0 and FO 0+) of fish oil replacement consisting of a mixture of linseed, sunflower and palm oils. After 109 days, growth and nutritional parameters were not affected by the treatment; however, fish fed with 0% of fish oil showed the lowest survival rate and without differences between the same diet with probiotics. As for biometric parameters, significant differences in the viscerosomatic index (VSI) were observed between fish fed the FO 0+ diet and the FO 100 and FO 25 diets. Results obtained from histological analysis did not detect inflammation in gut samples, while liver samples showed a remarkable steatosis in all four treatments. Total fish oil replacement produced a significant difference in the width of the lamina propria. The dietary inclusion of probiotics in the FO 0+ diet seems to favour a recovery of intestine histology. In addition, as fish oil substitution increased, the width of the lamina propria also increased. In conclusion, it is possible to affirm that the four diets administrated toSeriola dumerilidid not compromise the correct development of the animals. es_ES
dc.description.sponsorship The financial support for this study was provided by the "Conselleria de Educacio, Cultura i Esport" of Valencian government (Reference: AICO/2015/123). We also acknowledge David Harry Rhead for their English revision. es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Aquaculture Nutrition es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fatty acids es_ES
dc.subject Fish oil es_ES
dc.subject Histology es_ES
dc.subject Probiotics es_ES
dc.subject Seriola dumerili es_ES
dc.subject Yellowtail es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Effect of fish oil replacement and probiotic addition on growth, body composition and histological parameters of yellowtail (Seriola dumerili) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/anu.13171 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2015%2F123/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Milián-Sorribes, MC.; Martínez-Llorens, S.; Cruz-Castellón, C.; Jover Cerda, M.; Tomas-Vidal, A. (2021). Effect of fish oil replacement and probiotic addition on growth, body composition and histological parameters of yellowtail (Seriola dumerili). Aquaculture Nutrition. 27(1):3-16. https://doi.org/10.1111/anu.13171 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/anu.13171 es_ES
dc.description.upvformatpinicio 3 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\418849 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Acar, Ü., & Türker, A. (2017). Response of Rainbow trout (Oncorhynchus mykiss ) to unrefined peanut oil diets: Effect on growth performance, fish health and fillet fatty acid composition. Aquaculture Nutrition, 24(1), 292-299. doi:10.1111/anu.12559 es_ES
dc.description.references Adamidou, S., Nengas, I., Henry, M., Grigorakis, K., Rigos, G., Nikolopoulou, D., … Jauncey, K. (2009). Growth, feed utilization, health and organoleptic characteristics of European seabass (Dicentrarchus labrax) fed extruded diets including low and high levels of three different legumes. Aquaculture, 293(3-4), 263-271. doi:10.1016/j.aquaculture.2009.04.045 es_ES
dc.description.references Akhter, N., Wu, B., Memon, A. M., & Mohsin, M. (2015). Probiotics and prebiotics associated with aquaculture: A review. Fish & Shellfish Immunology, 45(2), 733-741. doi:10.1016/j.fsi.2015.05.038 es_ES
dc.description.references Akter, M. N., Sutriana, A., Talpur, A. D., & Hashim, R. (2015). Dietary supplementation with mannan oligosaccharide influences growth, digestive enzymes, gut morphology, and microbiota in juvenile striped catfish, Pangasianodon hypophthalmus. Aquaculture International, 24(1), 127-144. doi:10.1007/s10499-015-9913-8 es_ES
dc.description.references Aly, S. M., Abdel-Galil Ahmed, Y., Abdel-Aziz Ghareeb, A., & Mohamed, M. F. (2008). Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish & Shellfish Immunology, 25(1-2), 128-136. doi:10.1016/j.fsi.2008.03.013 es_ES
dc.description.references Badillo-Zapata, D., Correa-Reyes, G., D’Abramo, L., Lazo, J., Toro-Vázquez, J., & Viana, M. (2010). Effect of replacing dietary fish oil with vegetable oils on the fatty acid composition of muscle tissue of juvenile California halibut (Paralichthys californicus). Ciencias Marinas, 36(2). doi:10.7773/cm.v36i2.1637 es_ES
dc.description.references Bell, J. G., McEvoy, J., Tocher, D. R., McGhee, F., Campbell, P. J., & Sargent, J. R. (2001). Replacement of Fish Oil with Rapeseed Oil in Diets of Atlantic Salmon (Salmo salar) Affects Tissue Lipid Compositions and Hepatocyte Fatty Acid Metabolism. The Journal of Nutrition, 131(5), 1535-1543. doi:10.1093/jn/131.5.1535 es_ES
dc.description.references Benedito-Palos, L., Navarro, J. C., Sitjà-Bobadilla, A., Gordon Bell, J., Kaushik, S., & Pérez-Sánchez, J. (2008). High levels of vegetable oils in plant protein-rich diets fed to gilthead sea bream (Sparus aurataL.): growth performance, muscle fatty acid profiles and histological alterations of target tissues. British Journal of Nutrition, 100(5), 992-1003. doi:10.1017/s0007114508966071 es_ES
dc.description.references Benedito-Palos, L., Saera-Vila, A., Calduch-Giner, J.-A., Kaushik, S., & Pérez-Sánchez, J. (2007). Combined replacement of fish meal and oil in practical diets for fast growing juveniles of gilthead sea bream (Sparus aurata L.): Networking of systemic and local components of GH/IGF axis. Aquaculture, 267(1-4), 199-212. doi:10.1016/j.aquaculture.2007.01.011 es_ES
dc.description.references BOGEVIK, A. S., HENDERSON, R. J., MUNDHEIM, H., OLSEN, R. E., & TOCHER, D. R. (2011). The effect of temperature and dietary fat level on tissue lipid composition in Atlantic salmon (Salmo salar) fed wax ester-rich oil from Calanus finmarchicus. Aquaculture Nutrition, 17(3), e781-e788. doi:10.1111/j.1365-2095.2010.00848.x es_ES
dc.description.references Bowyer, J. N., Qin, J. G., Adams, L. R., Thomson, M. J. S., & Stone, D. A. J. (2012). The response of digestive enzyme activities and gut histology in yellowtail kingfish (Seriola lalandi) to dietary fish oil substitution at different temperatures. Aquaculture, 368-369, 19-28. doi:10.1016/j.aquaculture.2012.09.012 es_ES
dc.description.references Bowyer, J. N., Qin, J. G., Smullen, R. P., Adams, L. R., Thomson, M. J. S., & Stone, D. A. J. (2013). The use of a soy product in juvenile yellowtail kingfish (Seriola lalandi) feeds at different water temperatures: 2. Soy protein concentrate. Aquaculture, 410-411, 1-10. doi:10.1016/j.aquaculture.2013.06.001 es_ES
dc.description.references Bowyer, J. N., Qin, J. G., Smullen, R. P., & Stone, D. A. J. (2012). Replacement of fish oil by poultry oil and canola oil in yellowtail kingfish (Seriola lalandi) at optimal and suboptimal temperatures. Aquaculture, 356-357, 211-222. doi:10.1016/j.aquaculture.2012.05.014 es_ES
dc.description.references Caballero, M. J., Izquierdo, M. S., Kjorsvik, E., Fernandez, A. J., & Rosenlund, G. (2004). Histological alterations in the liver of sea bream, Sparus aurata L., caused by short- or long-term feeding with vegetable oils. Recovery of normal morphology after feeding fish oil as the sole lipid source. Journal of Fish Diseases, 27(9), 531-541. doi:10.1111/j.1365-2761.2004.00572.x es_ES
dc.description.references Caballero, M. ., Obach, A., Rosenlund, G., Montero, D., Gisvold, M., & Izquierdo, M. . (2002). Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss. Aquaculture, 214(1-4), 253-271. doi:10.1016/s0044-8486(01)00852-3 es_ES
dc.description.references Cerezuela, R., Fumanal, M., Tapia-Paniagua, S. T., Meseguer, J., Moriñigo, M. Á., & Esteban, M. Á. (2012). Histological alterations and microbial ecology of the intestine in gilthead seabream (Sparus aurata L.) fed dietary probiotics and microalgae. Cell and Tissue Research, 350(3), 477-489. doi:10.1007/s00441-012-1495-4 es_ES
dc.description.references Cerezuela, R., Fumanal, M., Tapia-Paniagua, S. T., Meseguer, J., Moriñigo, M. Á., & Esteban, M. Á. (2013). Changes in intestinal morphology and microbiota caused by dietary administration of inulin and Bacillus subtilis in gilthead sea bream (Sparus aurata L.) specimens. Fish & Shellfish Immunology, 34(5), 1063-1070. doi:10.1016/j.fsi.2013.01.015 es_ES
dc.description.references Collins, G. M., Ball, A. S., Qin, J. G., Bowyer, J. N., & Stone, D. A. J. (2012). Effect of alternative lipids and temperature on growth factor gene expression in yellowtail kingfish (Seriola lalandi). Aquaculture Research, 45(7), 1236-1245. doi:10.1111/are.12067 es_ES
dc.description.references De Schrijver, R., & Ollevier, F. (2000). Protein digestion in juvenile turbot (Scophthalmus maximus) and effects of dietary administration of Vibrio proteolyticus. Aquaculture, 186(1-2), 107-116. doi:10.1016/s0044-8486(99)00372-5 es_ES
dc.description.references Dias, J., Conceição, L. E. C., Ribeiro, A. R., Borges, P., Valente, L. M. P., & Dinis, M. T. (2009). Practical diet with low fish-derived protein is able to sustain growth performance in gilthead seabream (Sparus aurata) during the grow-out phase. Aquaculture, 293(3-4), 255-262. doi:10.1016/j.aquaculture.2009.04.042 es_ES
dc.description.references Dimitroglou, A., Merrifield, D. L., Carnevali, O., Picchietti, S., Avella, M., Daniels, C., … Davies, S. J. (2011). Microbial manipulations to improve fish health and production – A Mediterranean perspective. Fish & Shellfish Immunology, 30(1), 1-16. doi:10.1016/j.fsi.2010.08.009 es_ES
dc.description.references Dimitroglou, A., Merrifield, D. L., Moate, R., Davies, S. J., Spring, P., Sweetman, J., & Bradley, G. (2009). Dietary mannan oligosaccharide supplementation modulates intestinal microbial ecology and improves gut morphology of rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Animal Science, 87(10), 3226-3234. doi:10.2527/jas.2008-1428 es_ES
dc.description.references Drew, M. D., Ogunkoya, A. E., Janz, D. M., & Van Kessel, A. G. (2007). Dietary influence of replacing fish meal and oil with canola protein concentrate and vegetable oils on growth performance, fatty acid composition and organochlorine residues in rainbow trout (Oncorhynchus mykiss). Aquaculture, 267(1-4), 260-268. doi:10.1016/j.aquaculture.2007.01.002 es_ES
dc.description.references EL-DAKAR, A. Y., SHALABY, S. M., & SAOUD, I. P. (2007). Assessing the use of a dietary probiotic/prebiotic as an enhancer of spinefoot rabbitfish Siganus rivulatus survival and growth. Aquaculture Nutrition, 13(6), 407-412. doi:10.1111/j.1365-2095.2007.00491.x es_ES
dc.description.references Estruch, G., Collado, M. C., Monge-Ortiz, R., Tomás-Vidal, A., Jover-Cerdá, M., Peñaranda, D. S., … Martínez-Llorens, S. (2018). Long-term feeding with high plant protein based diets in gilthead seabream (Sparus aurata, L.) leads to changes in the inflammatory and immune related gene expression at intestinal level. BMC Veterinary Research, 14(1). doi:10.1186/s12917-018-1626-6 es_ES
dc.description.references Estruch, G., Tomás-Vidal, A., El Nokrashy, A. M., Monge-Ortiz, R., Godoy-Olmos, S., Jover Cerdá, M., & Martínez-Llorens, S. (2018). Inclusion of alternative marine by-products in aquafeeds with different levels of plant-based sources for on-growing gilthead sea bream (Sparus aurata, L.): effects on digestibility, amino acid retention, ammonia excretion and enzyme activity. Archives of Animal Nutrition, 72(4), 321-339. doi:10.1080/1745039x.2018.1472408 es_ES
dc.description.references FIGUEIREDO-SILVA, A., ROCHA, E., DIAS, J., SILVA, P., REMA, P., GOMES, E., & VALENTE, L. M. P. (2005). Partial replacement of fish oil by soybean oil on lipid distribution and liver histology in European sea bass (Dicentrarchus labrax) and rainbow trout (Oncorhynchus mykiss) juveniles. Aquaculture Nutrition, 11(2), 147-155. doi:10.1111/j.1365-2095.2004.00337.x es_ES
dc.description.references Fountoulaki, E., Vasilaki, A., Hurtado, R., Grigorakis, K., Karacostas, I., Nengas, I., … Alexis, M. N. (2009). Fish oil substitution by vegetable oils in commercial diets for gilthead sea bream (Sparus aurata L.); effects on growth performance, flesh quality and fillet fatty acid profile. Aquaculture, 289(3-4), 317-326. doi:10.1016/j.aquaculture.2009.01.023 es_ES
dc.description.references Gildberg, A., Johansen, A., & Bøgwald, J. (1995). Growth and survival of Atlantic salmon (Salmo salar) fry given diets supplemented with fish protein hydrolysate and lactic acid bacteria during a challenge trial with Aeromonas salmonicida. Aquaculture, 138(1-4), 23-34. doi:10.1016/0044-8486(95)01144-7 es_ES
dc.description.references HIDALGO, M. C., SKALLI, A., ABELLAN, E., ARIZCUN, M., & CARDENETE, G. (2006). Dietary intake of probiotics and maslinic acid in juvenile dentex (Dentex dentex L.): effects on growth performance, survival and liver proteolytic activities. Aquaculture Nutrition, 12(4), 256-266. doi:10.1111/j.1365-2095.2006.00408.x es_ES
dc.description.references Higgs, D. A., Balfry, S. K., Oakes, J. D., Rowshandeli, M., Skura, B. J., & Deacon, G. (2006). Efficacy of an equal blend of canola oil and poultry fat as an alternate dietary lipid source for Atlantic salmon (Salmo salar L.) in sea water. I: effects on growth performance, and whole body and fillet proximate and lipid composition. Aquaculture Research, 37(2), 180-191. doi:10.1111/j.1365-2109.2005.01420.x es_ES
dc.description.references Ibeas, C., Cejas, J. R., Fores, R., Badía, P., Gómez, T., & Hernández, A. L. (1997). Influence of eicosapentaenoic to docosahexaenoic acid ratio () of dietary lipids on growth and fatty acid composition of gilthead seabream (Sparus aurata) juveniles. Aquaculture, 150(1-2), 91-102. doi:10.1016/s0044-8486(96)01473-1 es_ES
dc.description.references Ibeas, C., Cejas, J., Gómez, T., Jerez, S., & Lorenzo, A. (1996). Influence of dietary n − 3 highly unsaturated fatty acids levels on juvenile gilthead seabream (Sparus aurata) growth and tissue fatty acid composition. Aquaculture, 142(3-4), 221-235. doi:10.1016/0044-8486(96)01251-3 es_ES
dc.description.references Ibeas, C., Rodrı́guez, C., Badı́a, P., Cejas, J. R., Santamarı́a, F. J., & Lorenzo, A. (2000). Efficacy of dietary methyl esters of n−3 HUFA vs. triacylglycerols of n−3 HUFA by gilthead seabream (Sparus aurata L.) juveniles. Aquaculture, 190(3-4), 273-287. doi:10.1016/s0044-8486(00)00399-9 es_ES
dc.description.references Izquierdo, M. S., Montero, D., Robaina, L., Caballero, M. J., Rosenlund, G., & Ginés, R. (2005). Alterations in fillet fatty acid profile and flesh quality in gilthead seabream (Sparus aurata) fed vegetable oils for a long term period. Recovery of fatty acid profiles by fish oil feeding. Aquaculture, 250(1-2), 431-444. doi:10.1016/j.aquaculture.2004.12.001 es_ES
dc.description.references Izquierdo, M. S., Obach, A., Arantzamendi, L., Montero, D., Robaina, L., & Rosenlund, G. (2003). Dietary lipid sources for seabream and seabass: growth performance, tissue composition and flesh quality. Aquaculture Nutrition, 9(6), 397-407. doi:10.1046/j.1365-2095.2003.00270.x es_ES
dc.description.references Jang, W. J., Lee, J. M., Hasan, M. T., Lee, B.-J., Lim, S. G., & Kong, I.-S. (2019). Effects of probiotic supplementation of a plant-based protein diet on intestinal microbial diversity, digestive enzyme activity, intestinal structure, and immunity in olive flounder (Paralichthys olivaceus). Fish & Shellfish Immunology, 92, 719-727. doi:10.1016/j.fsi.2019.06.056 es_ES
dc.description.references Jöborn, A., Olsson, J. C., Westerdahl, A., Conway, P. L., & Kjelleberg, S. (1997). Colonization in the fish intestinal tract and production of inhibitory substances in intestinal mucus and faecal extracts by Carnobacterium sp. strain K1. Journal of Fish Diseases, 20(5), 383-392. doi:10.1046/j.1365-2761.1997.00316.x es_ES
dc.description.references Jover, M., Garcı́a-Gómez, A., Tomás, A., De la Gándara, F., & Pérez, L. (1999). Growth of mediterranean yellowtail (Seriola dumerilii) fed extruded diets containing different levels of protein and lipid. Aquaculture, 179(1-4), 25-33. doi:10.1016/s0044-8486(99)00149-0 es_ES
dc.description.references Kalogeropoulos, N., Alexis, M. N., & Henderson, R. J. (1992). Effects of dietary soybean and cod-liver oil levels on growth and body composition of gilthead bream ( Sparus aurata). Aquaculture, 104(3-4), 293-308. doi:10.1016/0044-8486(92)90211-3 es_ES
dc.description.references Khaoian, P., Nguyen, H. P., Ogita, Y., Fukada, H., & Masumoto, T. (2014). Taurine supplementation and palm oil substitution in low-fish meal diets for young yellowtail Seriola quinqueradiata. Aquaculture, 420-421, 219-224. doi:10.1016/j.aquaculture.2013.11.012 es_ES
dc.description.references Kiron, V., Fukuda, H., Takeuchi, T., & Watanabe, T. (1995). Essential fatty acid nutrition and defence mechanisms in rainbow trout Oncorhynchus mykiss. Comparative Biochemistry and Physiology Part A: Physiology, 111(3), 361-367. doi:10.1016/0300-9629(95)00042-6 es_ES
dc.description.references Korkea-aho, T. L., Papadopoulou, A., Heikkinen, J., von Wright, A., Adams, A., Austin, B., & Thompson, K. D. (2012). Pseudomonas M162 confers protection against rainbow trout fry syndrome by stimulating immunity. Journal of Applied Microbiology, 113(1), 24-35. doi:10.1111/j.1365-2672.2012.05325.x es_ES
dc.description.references Lazado, C. C., Caipang, C. M. A., Brinchmann, M. F., & Kiron, V. (2011). In vitro adherence of two candidate probiotics from Atlantic cod and their interference with the adhesion of two pathogenic bacteria. Veterinary Microbiology, 148(2-4), 252-259. doi:10.1016/j.vetmic.2010.08.024 es_ES
dc.description.references Liu, S., Wang, S., Cai, Y., Li, E., Ren, Z., Wu, Y., … Zhou, Y. (2020). Beneficial effects of a host gut-derived probiotic, Bacillus pumilus, on the growth, non-specific immune response and disease resistance of juvenile golden pompano, Trachinotus ovatus. Aquaculture, 514, 734446. doi:10.1016/j.aquaculture.2019.734446 es_ES
dc.description.references Lu, S., Zhao, N., Zhao, A., & He, R. (2008). Effect of soybean phospholipid supplementation in formulated microdiets and live food on foregut and liver histological changes of Pelteobagrus fulvidraco larvae. Aquaculture, 278(1-4), 119-127. doi:10.1016/j.aquaculture.2007.12.007 es_ES
dc.description.references Macey, B. M., & Coyne, V. E. (2006). Colonization of the Gastrointestinal Tract of the Farmed South African Abalone Haliotis midae by the Probionts Vibrio midae SY9, Cryptococcus sp. SS1, and Debaryomyces hansenii AY1. Marine Biotechnology, 8(3), 246-259. doi:10.1007/s10126-005-0113-9 es_ES
dc.description.references Martin, S. A. M., & Król, E. (2017). Nutrigenomics and immune function in fish: new insights from omics technologies. Developmental & Comparative Immunology, 75, 86-98. doi:10.1016/j.dci.2017.02.024 es_ES
dc.description.references Martínez-Llorens, S., Vidal, A. T., Moñino, A. V., Torres, M. P., & Cerdá, M. J. (2007). Effects of dietary soybean oil concentration on growth, nutrient utilization and muscle fatty acid composition of gilthead sea bream (Sparus aurata L.). Aquaculture Research, 38(1), 76-81. doi:10.1111/j.1365-2109.2006.01636.x es_ES
dc.description.references Menoyo, D., Diez, A., Lopez-Bote, C. J., Casado, S., Obach, A., & Bautista, J. M. (2006). Dietary fat type affects lipid metabolism in Atlantic salmon (Salmo salar L.) and differentially regulates glucose transporter GLUT4 expression in muscle. Aquaculture, 261(1), 294-304. doi:10.1016/j.aquaculture.2006.07.018 es_ES
dc.description.references Merrifield, D. L., Dimitroglou, A., Foey, A., Davies, S. J., Baker, R. T. M., Bøgwald, J., … Ringø, E. (2010). The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture, 302(1-2), 1-18. doi:10.1016/j.aquaculture.2010.02.007 es_ES
dc.description.references Monge-Ortiz, R., Tomás-Vidal, A., Gallardo-Álvarez, F. J., Estruch, G., Godoy-Olmos, S., Jover-Cerdá, M., & Martínez-Llorens, S. (2018). Partial and total replacement of fishmeal by a blend of animal and plant proteins in diets for Seriola dumerili : Effects on performance and nutrient efficiency. Aquaculture Nutrition, 24(4), 1163-1174. doi:10.1111/anu.12655 es_ES
dc.description.references Monge-Ortiz, R., Tomás-Vidal, A., Rodriguez-Barreto, D., Martínez-Llorens, S., Pérez, J. A., Jover-Cerdá, M., & Lorenzo, A. (2017). Replacement of fish oil with vegetable oil blends in feeds for greater amberjack (Seriola dumerili) juveniles: Effect on growth performance, feed efficiency, tissue fatty acid composition and flesh nutritional value. Aquaculture Nutrition, 24(1), 605-615. doi:10.1111/anu.12595 es_ES
dc.description.references Montero, D., Grasso, V., Izquierdo, M. S., Ganga, R., Real, F., Tort, L., … Acosta, F. (2008). Total substitution of fish oil by vegetable oils in gilthead sea bream (Sparus aurata) diets: Effects on hepatic Mx expression and some immune parameters. Fish & Shellfish Immunology, 24(2), 147-155. doi:10.1016/j.fsi.2007.08.002 es_ES
dc.description.references Montero, D., & Izquierdo, M. (2010). Welfare and Health of Fish Fed Vegetable Oils as Alternative Lipid Sources to Fish Oil. Fish Oil Replacement and Alternative Lipid Sources in Aquaculture Feeds, 439-485. doi:10.1201/9781439808634-c14 es_ES
dc.description.references Montero, D., Kalinowski, T., Obach, A., Robaina, L., Tort, L., Caballero, M. ., & Izquierdo, M. . (2003). Vegetable lipid sources for gilthead seabream (Sparus aurata): effects on fish health. Aquaculture, 225(1-4), 353-370. doi:10.1016/s0044-8486(03)00301-6 es_ES
dc.description.references Montero, D., Tort, L., Izquierdo, M. S., Robaina, L., & Vergara, J. M. (1998). Fish Physiology and Biochemistry, 18(4), 399-407. doi:10.1023/a:1007734720630 es_ES
dc.description.references Kamali Najafabad, M., Imanpoor, M. R., Taghizadeh, V., & Alishahi, A. (2016). Effect of dietary chitosan on growth performance, hematological parameters, intestinal histology and stress resistance of Caspian kutum (Rutilus frisii kutum Kamenskii, 1901) fingerlings. Fish Physiology and Biochemistry, 42(4), 1063-1071. doi:10.1007/s10695-016-0197-3 es_ES
dc.description.references Nanton, D. A., Vegusdal, A., Rørå, A. M. B., Ruyter, B., Baeverfjord, G., & Torstensen, B. E. (2007). Muscle lipid storage pattern, composition, and adipocyte distribution in different parts of Atlantic salmon (Salmo salar) fed fish oil and vegetable oil. Aquaculture, 265(1-4), 230-243. doi:10.1016/j.aquaculture.2006.03.053 es_ES
dc.description.references Nasopoulou, C., & Zabetakis, I. (2012). Benefits of fish oil replacement by plant originated oils in compounded fish feeds. A review. LWT, 47(2), 217-224. doi:10.1016/j.lwt.2012.01.018 es_ES
dc.description.references Nogales-Mérida, S., Martínez-Llorens, S., Moñino, A. V., Jover Cerdá, M., & Tomás-Vidal, A. (2017). Fish oil substitution by soybean oil in Sharpsnout seabream Diplodus puntazzo: Performance, fatty acid profile, and liver histology. Journal of Applied Aquaculture, 29(1), 46-61. doi:10.1080/10454438.2016.1274933 es_ES
dc.description.references O’Fallon, J. V., Busboom, J. R., Nelson, M. L., & Gaskins, C. T. (2007). A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. Journal of Animal Science, 85(6), 1511-1521. doi:10.2527/jas.2006-491 es_ES
dc.description.references Øverland, M., Sørensen, M., Storebakken, T., Penn, M., Krogdahl, Å., & Skrede, A. (2009). Pea protein concentrate substituting fish meal or soybean meal in diets for Atlantic salmon (Salmo salar)—Effect on growth performance, nutrient digestibility, carcass composition, gut health, and physical feed quality. Aquaculture, 288(3-4), 305-311. doi:10.1016/j.aquaculture.2008.12.012 es_ES
dc.description.references Pratoomyot, J., Bendiksen, E. Å., Bell, J. G., & Tocher, D. R. (2008). Comparison of effects of vegetable oils blended with southern hemisphere fish oil and decontaminated northern hemisphere fish oil on growth performance, composition and gene expression in Atlantic salmon (Salmo salar L.). Aquaculture, 280(1-4), 170-178. doi:10.1016/j.aquaculture.2008.04.028 es_ES
dc.description.references Ringø, E. (2020). Probiotics in shellfish aquaculture. Aquaculture and Fisheries, 5(1), 1-27. doi:10.1016/j.aaf.2019.12.001 es_ES
dc.description.references Rola-Pleszczynski, M., & Stankova, J. (1992). Leukotriene B4 enhances interleukin-6 (IL-6) production and IL-6 messenger RNA accumulation in human monocytes in vitro: transcriptional and posttranscriptional mechanisms. Blood, 80(4), 1004-1011. doi:10.1182/blood.v80.4.1004.1004 es_ES
dc.description.references Rosenlund, G., Obach, A., Sandberg, M. G., Standal, H., & Tveit, K. (2001). Effect of alternative lipid sources on long-term growth performance and quality of Atlantic salmon (Salmo salar  L.). Aquaculture Research, 32, 323-328. doi:10.1046/j.1355-557x.2001.00025.x es_ES
dc.description.references SÁENZ de RODRIGÁÑEZ, M. A., DÍAZ-ROSALES, P., CHABRILLÓN, M., SMIDT, H., ARIJO, S., LEÓN-RUBIO, J. M., … MOYANO, F. J. (2009). Effect of dietary administration of probiotics on growth and intestine functionality of juvenile Senegalese sole (Solea senegalensis, Kaup 1858). Aquaculture Nutrition, 15(2), 177-185. doi:10.1111/j.1365-2095.2008.00581.x es_ES
dc.description.references SALES, J., & GLENCROSS, B. (2011). A meta-analysis of the effects of dietary marine oil replacement with vegetable oils on growth, feed conversion and muscle fatty acid composition of fish species. Aquaculture Nutrition, 17(2), e271-e287. doi:10.1111/j.1365-2095.2010.00761.x es_ES
dc.description.references Salze, G., McLean, E., Battle, P. R., Schwarz, M. H., & Craig, S. R. (2010). Use of soy protein concentrate and novel ingredients in the total elimination of fish meal and fish oil in diets for juvenile cobia, Rachycentron canadum. Aquaculture, 298(3-4), 294-299. doi:10.1016/j.aquaculture.2009.11.003 es_ES
dc.description.references Santigosa, E., Sánchez, J., Médale, F., Kaushik, S., Pérez-Sánchez, J., & Gallardo, M. A. (2008). Modifications of digestive enzymes in trout (Oncorhynchus mykiss) and sea bream (Sparus aurata) in response to dietary fish meal replacement by plant protein sources. Aquaculture, 282(1-4), 68-74. doi:10.1016/j.aquaculture.2008.06.007 es_ES
dc.description.references SENO-O, A., TAKAKUWA, F., HASHIGUCHI, T., MORIOKA, K., MASUMOTO, T., & FUKADA, H. (2008). Replacement of dietary fish oil with olive oil in young yellowtailSeriola quinqueradiata: effects on growth, muscular fatty acid composition and prevention of dark muscle discoloration during refrigerated storage. Fisheries Science, 74(6), 1297-1306. doi:10.1111/j.1444-2906.2008.01655.x es_ES
dc.description.references Takakuwa, F., Fukada, H., Hosokawa, H., & Masumoto, T. (2006). Optimum digestible protein and energy levels and ratio for greater amberjack Seriola dumerili (Risso) fingerling. Aquaculture Research, 37(15), 1532-1539. doi:10.1111/j.1365-2109.2006.01590.x es_ES
dc.description.references Ten Doeschate, K. I., & Coyne, V. E. (2008). Improved growth rate in farmed Haliotis midae through probiotic treatment. Aquaculture, 284(1-4), 174-179. doi:10.1016/j.aquaculture.2008.07.018 es_ES
dc.description.references Thanuthong, T., Francis, D. S., Senadheera, S. D., Jones, P. L., & Turchini, G. M. (2011). Fish oil replacement in rainbow trout diets and total dietary PUFA content: I) Effects on feed efficiency, fat deposition and the efficiency of a finishing strategy. Aquaculture, 320(1-2), 82-90. doi:10.1016/j.aquaculture.2011.08.007 es_ES
dc.description.references TOMAS, A., DE LA GANDARA, F., GARCIA-GOMEZ, A., PEREZ, L., & JOVER, M. (2005). Utilization of soybean meal as an alternative protein source in the Mediterranean yellowtail, Seriola dumerili. Aquaculture Nutrition, 11(5), 333-340. doi:10.1111/j.1365-2095.2005.00365.x es_ES
dc.description.references Vidal, A. T., De la Gándara García, F., Gómez, A. G., & Cerdá, M. J. (2008). Effect of the protein/energy ratio on the growth of Mediterranean yellowtail (Seriola dumerili). Aquaculture Research, 39(11), 1141-1148. doi:10.1111/j.1365-2109.2008.01975.x es_ES
dc.description.references Torstensen, B. E., Espe, M., Sanden, M., Stubhaug, I., Waagbø, R., Hemre, G.-I., … Berntssen, M. H. G. (2008). Novel production of Atlantic salmon (Salmo salar) protein based on combined replacement of fish meal and fish oil with plant meal and vegetable oil blends. Aquaculture, 285(1-4), 193-200. doi:10.1016/j.aquaculture.2008.08.025 es_ES
dc.description.references Turchini, G. M., Francis, D. S., Senadheera, S. P. S. D., Thanuthong, T., & De Silva, S. S. (2011). Fish oil replacement with different vegetable oils in Murray cod: Evidence of an «omega-3 sparing effect» by other dietary fatty acids. Aquaculture, 315(3-4), 250-259. doi:10.1016/j.aquaculture.2011.02.016 es_ES
dc.description.references UYAN, O., KOSHIO, S., ISHIKAWA, M., YOKOYAMA, S., UYAN, S., REN, T., & HERNANDEZ, L. H. H. (2009). The influence of dietary phospholipid level on the performances of juvenile amberjack,Seriola dumerili, fed non-fishmeal diets. Aquaculture Nutrition, 15(5), 550-557. doi:10.1111/j.1365-2095.2008.00621.x es_ES
dc.description.references Wassef, E. A., Saleh, N. E., & El-Abd El-Hady, H. A. (2008). Vegetable oil blend as alternative lipid resources in diets for gilthead seabream, Sparus aurata. Aquaculture International, 17(5), 421-435. doi:10.1007/s10499-008-9213-7 es_ES
dc.description.references Wassef, E. A., Wahby, O. M., & Sakr, E. M. (2007). Effect of dietary vegetable oils on health and liver histology of gilthead seabream (Sparus aurata) growers. Aquaculture Research, 38(8), 852-861. doi:10.1111/j.1365-2109.2007.01738.x es_ES
dc.description.references Xu, H., Dong, X., Zuo, R., Mai, K., & Ai, Q. (2016). Response of juvenile Japanese seabass (Lateolabrax japonicus) to different dietary fatty acid profiles: Growth performance, tissue lipid accumulation, liver histology and flesh texture. Aquaculture, 461, 40-47. doi:10.1016/j.aquaculture.2016.04.023 es_ES
dc.description.references Yang, G., Cao, H., Jiang, W., Hu, B., Jian, S., Wen, C., … Peng, M. (2019). Dietary supplementation of Bacillus cereus as probiotics in Pengze crucian carp ( Carassius auratus var. Pengze): Effects on growth performance, fillet quality, serum biochemical parameters and intestinal histology. Aquaculture Research, 50(8), 2207-2217. doi:10.1111/are.14102 es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES
dc.subject.ods 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos es_ES
dc.subject.ods 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem