Mostrar el registro sencillo del ítem
dc.contributor.author | Bertolesi, Elisa | es_ES |
dc.contributor.author | Buitrago, Manuel | es_ES |
dc.contributor.author | Giordano, Ersilia | es_ES |
dc.contributor.author | Calderón García, Pedro Antonio | es_ES |
dc.contributor.author | Moragues, Juan J | es_ES |
dc.contributor.author | Clementi, Francesco | es_ES |
dc.contributor.author | Adam, Jose M | es_ES |
dc.date.accessioned | 2021-02-09T04:31:54Z | |
dc.date.available | 2021-02-09T04:31:54Z | |
dc.date.issued | 2020-07-10 | es_ES |
dc.identifier.issn | 0950-0618 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160901 | |
dc.description.abstract | [EN] This paper presents the experimental results obtained from tests on a 2/3 scale U-shaped masonry building constructed in one of the ICITECH laboratories at the Universitat Politecnica de Valencia (Spain). The prototype measured 3.31 x 4.19 m(2) by 2.15 m high and had a wall thickness of 230 mm. The masonry was composed of 230 x 110 x 50 mm(3) solid clay bricks with approximately 10 mm-thick mortar joints arranged in English bond. The tests were aimed at evaluating the effectiveness of cement-based reinforcing materials (Textile Reinforced Mortar) applied to weak masonry substrates severely damaged by horizontal loads such as those induced by a seismic event. The tests were carried out in three phases: (i) testing of the as-built structure, (ii) application of one external layer of TRM to restore the masonry's original load-bearing capacity and then (iii) testing the TRM-strengthened structure. Dynamic behaviour was monitored by both traditional and fibre optic sensors (FO), including 28 Linear Variable Displacement Transducers (LVDTs) and 3 long-gauge optical sensors. Strengthening effectiveness was evaluated by several parameters: hysteretic curves, strength degradation, computed cumulative energy dissipation and cracking mechanisms. TRM reinforcement was shown to significantly extend the load-bearing and displacement capacity of the masonry prototype, reducing seismic-induced damage applied by pseudodynamic excitation, although it had a limited effect on cumulative energy dissipation. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Construction and Building Materials | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Textile Reinforced Mortar (TRM) | es_ES |
dc.subject | In-Scale Masonry Structure | es_ES |
dc.subject | Experimental Pseudo Dynamic Tests | es_ES |
dc.subject | Seismic Performance | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | Effectiveness of Textile Reinforced Mortar (TRM) Materials in preventing Seismic-Induced Damage in a U-Shaped Masonry Structure Submitted to Pseudo-Dynamic Excitations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.conbuildmat.2020.118532 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIA2014-59036-R/ES/SISTEMAS INTELIGENTES PARA LA MONITORIZACION Y EVALUACION DE EDIFICIOS DE OBRA DE FABRICA TRAS SER SOMETIDOS A ACCIONES EXTRAORDINARIAS: RIESGOS GEOTECNICOS, FUEGO, IMPACTOS,/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.description.bibliographicCitation | Bertolesi, E.; Buitrago, M.; Giordano, E.; Calderón García, PA.; Moragues, JJ.; Clementi, F.; Adam, JM. (2020). Effectiveness of Textile Reinforced Mortar (TRM) Materials in preventing Seismic-Induced Damage in a U-Shaped Masonry Structure Submitted to Pseudo-Dynamic Excitations. Construction and Building Materials. 248:1-17. https://doi.org/10.1016/j.conbuildmat.2020.118532 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.conbuildmat.2020.118532 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 248 | es_ES |
dc.relation.pasarela | S\404116 | es_ES |
dc.contributor.funder | Mapei Spain S.A. | es_ES |
dc.contributor.funder | Ministerio de Economía y Empresa | es_ES |
dc.description.references | Kallioras, S., Guerrini, G., Tomassetti, U., Marchesi, B., Penna, A., Graziotti, F., & Magenes, G. (2018). Experimental seismic performance of a full-scale unreinforced clay-masonry building with flexible timber diaphragms. Engineering Structures, 161, 231-249. doi:10.1016/j.engstruct.2018.02.016 | es_ES |
dc.description.references | Graziotti, F., Tomassetti, U., Penna, A., & Magenes, G. (2016). Out-of-plane shaking table tests on URM single leaf and cavity walls. Engineering Structures, 125, 455-470. doi:10.1016/j.engstruct.2016.07.011 | es_ES |
dc.description.references | Mugahed Amran, Y. H., Alyousef, R., Rashid, R. S. M., Alabduljabbar, H., & Hung, C.-C. (2018). Properties and applications of FRP in strengthening RC structures: A review. Structures, 16, 208-238. doi:10.1016/j.istruc.2018.09.008 | es_ES |
dc.description.references | Kouris, L. A. S., & Triantafillou, T. C. (2018). State-of-the-art on strengthening of masonry structures with textile reinforced mortar (TRM). Construction and Building Materials, 188, 1221-1233. doi:10.1016/j.conbuildmat.2018.08.039 | es_ES |
dc.description.references | Spinella, N. (2019). Modeling of shear behavior of reinforced concrete beams strengthened with FRP. Composite Structures, 215, 351-364. doi:10.1016/j.compstruct.2019.02.073 | es_ES |
dc.description.references | Mukhtar, F. M., & Faysal, R. M. (2018). A review of test methods for studying the FRP-concrete interfacial bond behavior. Construction and Building Materials, 169, 877-887. doi:10.1016/j.conbuildmat.2018.02.163 | es_ES |
dc.description.references | Bernat-Masó, E., & Gil, L. (2019). Assessing the performance of CFRP strengthening on masonry walls using experimental modal analysis. Engineering Structures, 193, 184-193. doi:10.1016/j.engstruct.2019.05.036 | es_ES |
dc.description.references | Babatunde, S. A. (2017). Review of strengthening techniques for masonry using fiber reinforced polymers. Composite Structures, 161, 246-255. doi:10.1016/j.compstruct.2016.10.132 | es_ES |
dc.description.references | Freddi, F., & Sacco, E. (2015). Debonding Process of Masonry Element Strengthened with FRP. Procedia Engineering, 109, 27-34. doi:10.1016/j.proeng.2015.06.206 | es_ES |
dc.description.references | Ceroni, F., Leone, M., Rizzo, V., Bellini, A., & Mazzotti, C. (2017). Influence of mortar joints on the behaviour of FRP materials bonded to different masonry substrates. Engineering Structures, 153, 550-568. doi:10.1016/j.engstruct.2017.10.030 | es_ES |
dc.description.references | Carrara, P., Ferretti, D., & Freddi, F. (2013). Debonding behavior of ancient masonry elements strengthened with CFRP sheets. Composites Part B: Engineering, 45(1), 800-810. doi:10.1016/j.compositesb.2012.04.029 | es_ES |
dc.description.references | DPCM 09/02/11. Evaluation and reduction of seismic risk of cultural heritage with reference to the Technical Standards for Constructions promulgated by the Ministry of Infrastructure and Transport on 2008 January 14th; 2011. | es_ES |
dc.description.references | Papanicolaou, C. G., Triantafillou, T. C., Karlos, K., & Papathanasiou, M. (2006). Textile-reinforced mortar (TRM) versus FRP as strengthening material of URM walls: in-plane cyclic loading. Materials and Structures, 40(10), 1081-1097. doi:10.1617/s11527-006-9207-8 | es_ES |
dc.description.references | Papanicolaou, C. G., Triantafillou, T. C., Papathanasiou, M., & Karlos, K. (2007). Textile reinforced mortar (TRM) versus FRP as strengthening material of URM walls: out-of-plane cyclic loading. Materials and Structures, 41(1), 143-157. doi:10.1617/s11527-007-9226-0 | es_ES |
dc.description.references | Harajli, M., ElKhatib, H., & San-Jose, J. T. (2010). Static and Cyclic Out-of-Plane Response of Masonry Walls Strengthened Using Textile-Mortar System. Journal of Materials in Civil Engineering, 22(11), 1171-1180. doi:10.1061/(asce)mt.1943-5533.0000128 | es_ES |
dc.description.references | De Santis, S., Casadei, P., De Canio, G., de Felice, G., Malena, M., Mongelli, M., & Roselli, I. (2015). Seismic performance of masonry walls retrofitted with steel reinforced grout. Earthquake Engineering & Structural Dynamics, 45(2), 229-251. doi:10.1002/eqe.2625 | es_ES |
dc.description.references | Shabdin, M., Zargaran, M., & Attari, N. K. A. (2018). Experimental diagonal tension (shear) test of Un-Reinforced Masonry (URM) walls strengthened with textile reinforced mortar (TRM). Construction and Building Materials, 164, 704-715. doi:10.1016/j.conbuildmat.2017.12.234 | es_ES |
dc.description.references | Al-Jaberi, Z., Myers, J. J., & ElGawady, M. A. (2018). Pseudo-static cyclic loading comparison of reinforced masonry walls strengthened with FRCM or NSM FRP. Construction and Building Materials, 167, 482-495. doi:10.1016/j.conbuildmat.2018.02.043 | es_ES |
dc.description.references | Deng, M., & Yang, S. (2018). Cyclic testing of unreinforced masonry walls retrofitted with engineered cementitious composites. Construction and Building Materials, 177, 395-408. doi:10.1016/j.conbuildmat.2018.05.132 | es_ES |
dc.description.references | Deng, M., Dong, Z., Wang, X., Zhang, Y., & Zhou, T. (2019). Shaking table tests of a half-scale 2-storey URM building retrofitted with a high ductility fibre reinforced concrete overlay system. Engineering Structures, 197, 109424. doi:10.1016/j.engstruct.2019.109424 | es_ES |
dc.description.references | Bairrão, R., & Falcão Silva, M. J. (2009). Shaking table tests of two different reinforcement techniques using polymeric grids on an asymmetric limestone full-scaled structure. Engineering Structures, 31(6), 1321-1330. doi:10.1016/j.engstruct.2008.04.039 | es_ES |
dc.description.references | MAPEI, (2018) http://www.mapei.com/. | es_ES |
dc.description.references | EN 14580. Natural stone test methods. Determination of the static elastic moduls, (2005). | es_ES |
dc.description.references | EN 13412. Products and systems for the protection and repair of concrete structures - Test methods - Determination of modulus of elasticity in compression, (2008). | es_ES |
dc.description.references | EN 1015-11. Methods of test for mortar for masonry Determination of flexural and compressive strength of hardened mortar, (1999). | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |