- -

Solving second-order linear differential equations with random analytic coefficients about regular-singular points

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Solving second-order linear differential equations with random analytic coefficients about regular-singular points

Mostrar el registro completo del ítem

Cortés, J.; Navarro-Quiles, A.; Romero, J.; Roselló, M. (2020). Solving second-order linear differential equations with random analytic coefficients about regular-singular points. Mathematics. 8(2):1-20. https://doi.org/10.3390/math8020230

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160906

Ficheros en el ítem

Metadatos del ítem

Título: Solving second-order linear differential equations with random analytic coefficients about regular-singular points
Autor: Cortés, J.-C. Navarro-Quiles, Ana Romero, José-Vicente Roselló, María-Dolores
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] In this contribution, we construct approximations for the density associated with the solution of second-order linear differential equations whose coefficients are analytic stochastic processes about regular-singular ...[+]
Palabras clave: Random variable transformation technique , Second-order random linear differential equation , Regular-singular point , First probability density function
Derechos de uso: Reconocimiento (by)
Fuente:
Mathematics. (eissn: 2227-7390 )
DOI: 10.3390/math8020230
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/math8020230
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F128/
info:eu-repo/grantAgreement/GVA//GJIDI%2F2018%2FA%2F009/
info:eu-repo/grantAgreement/GVA//GJIDI%2F2018%2FA%2F010/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/
Agradecimientos:
This work was partially funded by the Ministerio de Economia y Competitividad Grant MTM2017-89664-P. Ana Navarro Quiles acknowledges the funding received from Generalitat Valenciana through a postdoctoral contract ...[+]
Tipo: Artículo

References

Hussein, A., & Selim, M. M. (2012). Solution of the stochastic radiative transfer equation with Rayleigh scattering using RVT technique. Applied Mathematics and Computation, 218(13), 7193-7203. doi:10.1016/j.amc.2011.12.088

Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160-173. doi:10.1016/j.cnsns.2015.09.009

Santos, L. T., Dorini, F. A., & Cunha, M. C. C. (2010). The probability density function to the random linear transport equation. Applied Mathematics and Computation, 216(5), 1524-1530. doi:10.1016/j.amc.2010.03.001 [+]
Hussein, A., & Selim, M. M. (2012). Solution of the stochastic radiative transfer equation with Rayleigh scattering using RVT technique. Applied Mathematics and Computation, 218(13), 7193-7203. doi:10.1016/j.amc.2011.12.088

Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160-173. doi:10.1016/j.cnsns.2015.09.009

Santos, L. T., Dorini, F. A., & Cunha, M. C. C. (2010). The probability density function to the random linear transport equation. Applied Mathematics and Computation, 216(5), 1524-1530. doi:10.1016/j.amc.2010.03.001

Hussein, A., & Selim, M. M. (2019). A complete probabilistic solution for a stochastic Milne problem of radiative transfer using KLE-RVT technique. Journal of Quantitative Spectroscopy and Radiative Transfer, 232, 54-65. doi:10.1016/j.jqsrt.2019.04.034

Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., & Roselló, M.-D. (2018). Solving second-order linear differential equations with random analytic coefficients about ordinary points: A full probabilistic solution by the first probability density function. Applied Mathematics and Computation, 331, 33-45. doi:10.1016/j.amc.2018.02.051

Cortés, J.-C., Jódar, L., Camacho, F., & Villafuerte, L. (2010). Random Airy type differential equations: Mean square exact and numerical solutions. Computers & Mathematics with Applications, 60(5), 1237-1244. doi:10.1016/j.camwa.2010.05.046

Calbo, G., Cortés, J.-C., & Jódar, L. (2011). Random Hermite differential equations: Mean square power series solutions and statistical properties. Applied Mathematics and Computation, 218(7), 3654-3666. doi:10.1016/j.amc.2011.09.008

Calbo, G., Cortés, J.-C., Jódar, L., & Villafuerte, L. (2011). Solving the random Legendre differential equation: Mean square power series solution and its statistical functions. Computers & Mathematics with Applications, 61(9), 2782-2792. doi:10.1016/j.camwa.2011.03.045

Cortés, J.-C., Villafuerte, L., & Burgos, C. (2017). A Mean Square Chain Rule and its Application in Solving the Random Chebyshev Differential Equation. Mediterranean Journal of Mathematics, 14(1). doi:10.1007/s00009-017-0853-6

Cortés, J.-C., Jódar, L., & Villafuerte, L. (2017). Mean square solution of Bessel differential equation with uncertainties. Journal of Computational and Applied Mathematics, 309, 383-395. doi:10.1016/j.cam.2016.01.034

Khudair, A. R., Haddad, S. A. M., & Khalaf, S. L. (2016). Mean Square Solutions of Second-Order Random Differential Equations by Using the Differential Transformation Method. Open Journal of Applied Sciences, 06(04), 287-297. doi:10.4236/ojapps.2016.64028

Qi, Y. (2018). A Very Brief Introduction to Nonnegative Tensors from the Geometric Viewpoint. Mathematics, 6(11), 230. doi:10.3390/math6110230

Ragusa, M. A., & Tachikawa, A. (2016). Boundary regularity of minimizers of p(x)-energy functionals. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 33(2), 451-476. doi:10.1016/j.anihpc.2014.11.003

Ragusa, M. A., & Tachikawa, A. (2019). Regularity for minimizers for functionals of double phase with variable exponents. Advances in Nonlinear Analysis, 9(1), 710-728. doi:10.1515/anona-2020-0022

Braumann, C. A., Cortés, J.-C., Jódar, L., & Villafuerte, L. (2018). On the random gamma function: Theory and computing. Journal of Computational and Applied Mathematics, 335, 142-155. doi:10.1016/j.cam.2017.11.045

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem