Mostrar el registro sencillo del ítem
dc.contributor.author | Buitrago, Manuel | es_ES |
dc.contributor.author | Bertolesi, Elisa | es_ES |
dc.contributor.author | Garzón-Roca, Julio | es_ES |
dc.contributor.author | Sagaseta, Juan | es_ES |
dc.contributor.author | Adam, Jose M | es_ES |
dc.date.accessioned | 2021-02-09T04:32:41Z | |
dc.date.available | 2021-02-09T04:32:41Z | |
dc.date.issued | 2020-12 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/160914 | |
dc.description.abstract | [EN] Building progressive collapse is currently one of the hottest topics in the structural engineering field. Most of the research carried out to date on this topic has been focused on the structural analysis of the failure of one or more columns in a building to determine the Alternative Load Paths (ALPs) the structure can activate. Past research was mainly focused on extreme situations with high loads and large structural deformations and, to a lesser extent, research looked at lower loads used in design accidental situations, which requires a different set of assumptions in the analysis. This paper describes a study aimed at analysing accidental design situations in corner-column removal scenarios in reinforced concrete (RC) building structures and evaluating the available real ALPs in order to establish practical recommendations for design situations that could be taken into account in future design codes. A wide parametric computational analysis was carried out with advanced Finite Element (FE) models which the authors validated by full¿scale tests on a purpose¿built building structure. The findings allowed us to: (i) establish design recommendations, (ii) demonstrate the importance of Vierendeel action and (iii) recommend Dynamic Amplification Factors (DAFs) for design situations. | es_ES |
dc.description.sponsorship | This research was funded by Fundacion BBVA-Becas Leonardo a Investigadores y Creadores Culturales 2017; the Spanish Ministry of Economy, Industry and Competitiveness, grant number BIA2017-88322-R-AR; Generalitat Valenciana/Fons Social Europeu, grant number APOSTD/2019/101 and Universitat Politecnica de Valencia, grant number PAID-10-17. This work is also part of the project "Extension of theoretical models against progressive collapse for tall and supertall concrete buildings", funded by the Engineering Physical Science Research Council (EPSRC) of the UK as part of an Impact Acceleration Account (IAA) held at the University of Surrey (grant number EP/K008153/1), and a continuation of two research projects also funded by EPSRC of the UK (grant ref: EP/K503939 and grant ref: EP/K008153/1). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Corner-column removal | es_ES |
dc.subject | Extreme events | es_ES |
dc.subject | FEM | es_ES |
dc.subject | Parametric study | es_ES |
dc.subject | Building structures | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | A Parametric Computational Study of RC Building Structures under Corner-Column Removal Situations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app10248911 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UKRI//EP%2FK008153%2F1/GB/Structural performance of slab-column connenctions under impact and blast loading/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UKRI//EP%2FK503939%2F1/GB/Impact Acceleration Account - University of Surrey 2012/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-10-17/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-88322-R/ES/COLAPSO PROGRESIVO Y ROBUSTEZ EN EDIFICIOS CON ESTRUCTURA PREFABRICADA DE HORMIGON/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F101/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.description.bibliographicCitation | Buitrago, M.; Bertolesi, E.; Garzón-Roca, J.; Sagaseta, J.; Adam, JM. (2020). A Parametric Computational Study of RC Building Structures under Corner-Column Removal Situations. Applied Sciences. 10(24):1-27. https://doi.org/10.3390/app10248911 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app10248911 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 27 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 24 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\423242 | es_ES |
dc.contributor.funder | Fundación BBVA | es_ES |
dc.contributor.funder | UK Research and Innovation | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Engineering and Physical Sciences Research Council, Reino Unido | es_ES |
dc.description.references | Adam, J. M., Parisi, F., Sagaseta, J., & Lu, X. (2018). Research and practice on progressive collapse and robustness of building structures in the 21st century. Engineering Structures, 173, 122-149. doi:10.1016/j.engstruct.2018.06.082 | es_ES |
dc.description.references | Kiakojouri, F., De Biagi, V., Chiaia, B., & Sheidaii, M. R. (2020). Progressive collapse of framed building structures: Current knowledge and future prospects. Engineering Structures, 206, 110061. doi:10.1016/j.engstruct.2019.110061 | es_ES |
dc.description.references | Stephen, D., Lam, D., Forth, J., Ye, J., & Tsavdaridis, K. D. (2019). An evaluation of modelling approaches and column removal time on progressive collapse of building. Journal of Constructional Steel Research, 153, 243-253. doi:10.1016/j.jcsr.2018.07.019 | es_ES |
dc.description.references | Eren, N., Brunesi, E., & Nascimbene, R. (2019). Influence of masonry infills on the progressive collapse resistance of reinforced concrete framed buildings. Engineering Structures, 178, 375-394. doi:10.1016/j.engstruct.2018.10.056 | es_ES |
dc.description.references | Zhang, L., Li, H., & Wang, W. (2020). Retrofit Strategies against Progressive Collapse of Steel Gravity Frames. Applied Sciences, 10(13), 4600. doi:10.3390/app10134600 | es_ES |
dc.description.references | Biagi, V. D., Kiakojouri, F., Chiaia, B., & Sheidaii, M. R. (2020). A Simplified Method for Assessing the Response of RC Frame Structures to Sudden Column Removal. Applied Sciences, 10(9), 3081. doi:10.3390/app10093081 | es_ES |
dc.description.references | Yu, J., Luo, L., & Li, Y. (2018). Numerical study of progressive collapse resistance of RC beam-slab substructures under perimeter column removal scenarios. Engineering Structures, 159, 14-27. doi:10.1016/j.engstruct.2017.12.038 | es_ES |
dc.description.references | Bermejo, M., Santos, A. P., & Goicolea, J. M. (2017). Development of Practical Finite Element Models for Collapse of Reinforced Concrete Structures and Experimental Validation. Shock and Vibration, 2017, 1-9. doi:10.1155/2017/4636381 | es_ES |
dc.description.references | Fu, Q., & Tan, K.-H. (2019). Numerical study on steel-concrete composite floor systems under corner column removal scenario. Structures, 21, 33-44. doi:10.1016/j.istruc.2019.06.003 | es_ES |
dc.description.references | Mucedero, G., Perrone, D., Brunesi, E., & Monteiro, R. (2020). Numerical Modelling and Validation of the Response of Masonry Infilled RC Frames Using Experimental Testing Results. Buildings, 10(10), 182. doi:10.3390/buildings10100182 | es_ES |
dc.description.references | Tohidi, M., & Janby, A. (2020). Finite-Element Modeling of Progressive Failure for Floor-to-Floor Assembly in the Precast Cross-Wall Structures. Journal of Structural Engineering, 146(6), 04020087. doi:10.1061/(asce)st.1943-541x.0002588 | es_ES |
dc.description.references | Olmati, P., Sagaseta, J., Cormie, D., & Jones, A. E. K. (2017). Simplified reliability analysis of punching in reinforced concrete flat slab buildings under accidental actions. Engineering Structures, 130, 83-98. doi:10.1016/j.engstruct.2016.09.061 | es_ES |
dc.description.references | Buitrago, M., Sagaseta, J., & Adam, J. M. (2020). Avoiding failures during building construction using structural fuses as load limiters on temporary shoring structures. Engineering Structures, 204, 109906. doi:10.1016/j.engstruct.2019.109906 | es_ES |
dc.description.references | Buitrago, M., Sagaseta, J., & Adam, J. M. (2018). Effects of sudden failure of shoring elements in concrete building structures under construction. Engineering Structures, 172, 508-522. doi:10.1016/j.engstruct.2018.06.052 | es_ES |
dc.description.references | Joshi, D. D., & Patel, P. V. (2018). Experimental study of precast dry connections constructed away from beam–column junction under progressive collapse scenario. Asian Journal of Civil Engineering, 20(2), 209-222. doi:10.1007/s42107-018-0099-z | es_ES |
dc.description.references | Ma, F., Gilbert, B. P., Guan, H., Xue, H., Lu, X., & Li, Y. (2019). Experimental study on the progressive collapse behaviour of RC flat plate substructures subjected to corner column removal scenarios. Engineering Structures, 180, 728-741. doi:10.1016/j.engstruct.2018.11.043 | es_ES |
dc.description.references | Yang, T., Han, Z., Deng, N., & Chen, W. (2019). Collapse Responses of Concrete Frames Reinforced with BFRP Bars in Middle Column Removal Scenario. Applied Sciences, 9(20), 4436. doi:10.3390/app9204436 | es_ES |
dc.description.references | Faridmehr, I., & Hajmohammadian Baghban, M. (2020). An Overview of Progressive Collapse Behavior of Steel Beam-to-Column Connections. Applied Sciences, 10(17), 6003. doi:10.3390/app10176003 | es_ES |
dc.description.references | Qian, K., & Li, B. (2019). Strengthening and Retrofitting Precast Concrete Buildings to Mitigate Progressive Collapse Using Externally Bonded GFRP Strips. Journal of Composites for Construction, 23(3), 04019018. doi:10.1061/(asce)cc.1943-5614.0000943 | es_ES |
dc.description.references | Lin, K., Lu, X., Li, Y., & Guan, H. (2019). Experimental study of a novel multi-hazard resistant prefabricated concrete frame structure. Soil Dynamics and Earthquake Engineering, 119, 390-407. doi:10.1016/j.soildyn.2018.04.011 | es_ES |
dc.description.references | Qian, K., Liang, S.-L., Feng, D.-C., Fu, F., & Wu, G. (2020). Experimental and Numerical Investigation on Progressive Collapse Resistance of Post-Tensioned Precast Concrete Beam-Column Subassemblages. Journal of Structural Engineering, 146(9), 04020170. doi:10.1061/(asce)st.1943-541x.0002714 | es_ES |
dc.description.references | Zhou, Y., Hu, X., Pei, Y., Hwang, H.-J., Chen, T., Yi, W., & Deng, L. (2020). Dynamic load test on progressive collapse resistance of fully assembled precast concrete frame structures. Engineering Structures, 214, 110675. doi:10.1016/j.engstruct.2020.110675 | es_ES |
dc.description.references | Alshaikh, I. M. H., Bakar, B. H. A., Alwesabi, E. A. H., & Akil, H. M. (2020). Experimental investigation of the progressive collapse of reinforced concrete structures: An overview. Structures, 25, 881-900. doi:10.1016/j.istruc.2020.03.018 | es_ES |
dc.description.references | Buitrago, M., Bertolesi, E., Calderón, P. A., & Adam, J. M. (2021). Robustness of steel truss bridges: Laboratory testing of a full-scale 21-metre bridge span. Structures, 29, 691-700. doi:10.1016/j.istruc.2020.12.005 | es_ES |
dc.description.references | Buitrago, M., Bertolesi, E., Sagaseta, J., Calderón, P. A., & Adam, J. M. (2021). Robustness of RC building structures with infill masonry walls: Tests on a purpose-built structure. Engineering Structures, 226, 111384. doi:10.1016/j.engstruct.2020.111384 | es_ES |
dc.description.references | Adam, J. M., Buitrago, M., Bertolesi, E., Sagaseta, J., & Moragues, J. J. (2020). Dynamic performance of a real-scale reinforced concrete building test under a corner-column failure scenario. Engineering Structures, 210, 110414. doi:10.1016/j.engstruct.2020.110414 | es_ES |
dc.description.references | Osteraas, J. D. (2006). Murrah Building Bombing Revisited: A Qualitative Assessment of Blast Damage and Collapse Patterns. Journal of Performance of Constructed Facilities, 20(4), 330-335. doi:10.1061/(asce)0887-3828(2006)20:4(330) | es_ES |
dc.description.references | Bažant, Z. P., Le, J.-L., Greening, F. R., & Benson, D. B. (2008). What Did and Did Not Cause Collapse of World Trade Center Twin Towers in New York? Journal of Engineering Mechanics, 134(10), 892-906. doi:10.1061/(asce)0733-9399(2008)134:10(892) | es_ES |
dc.description.references | Sasani, M., Kazemi, A., Sagiroglu, S., & Forest, S. (2011). Progressive Collapse Resistance of an Actual 11-Story Structure Subjected to Severe Initial Damage. Journal of Structural Engineering, 137(9), 893-902. doi:10.1061/(asce)st.1943-541x.0000418 | es_ES |
dc.description.references | Pearson, C., & Delatte, N. (2005). Ronan Point Apartment Tower Collapse and its Effect on Building Codes. Journal of Performance of Constructed Facilities, 19(2), 172-177. doi:10.1061/(asce)0887-3828(2005)19:2(172) | es_ES |
dc.description.references | Xiao, Y., Kunnath, S., Li, F. W., Zhao, Y. B., Lew, H. S., & Bao, Y. (2015). Collapse Test of Three-Story Half-Scale Reinforced Concrete Frame Building. ACI Structural Journal, 112(4). doi:10.14359/51687746 | es_ES |
dc.description.references | Qian, K., Weng, Y.-H., & Li, B. (2018). Impact of two columns missing on dynamic response of RC flat slab structures. Engineering Structures, 177, 598-615. doi:10.1016/j.engstruct.2018.10.011 | es_ES |
dc.description.references | Feng, P., Qiang, H., Ou, X., Qin, W., & Yang, J. (2019). Progressive Collapse Resistance of GFRP-Strengthened RC Beam–Slab Subassemblages in a Corner Column–Removal Scenario. Journal of Composites for Construction, 23(1), 04018076. doi:10.1061/(asce)cc.1943-5614.0000917 | es_ES |
dc.description.references | Zhou, Y., Chen, T., Pei, Y., Hwang, H.-J., Hu, X., Yi, W., & Deng, L. (2019). Static load test on progressive collapse resistance of fully assembled precast concrete frame structure. Engineering Structures, 200, 109719. doi:10.1016/j.engstruct.2019.109719 | es_ES |
dc.description.references | Gao, S., & Guo, L. (2015). Progressive collapse analysis of 20-storey building considering composite action of floor slab. International Journal of Steel Structures, 15(2), 447-458. doi:10.1007/s13296-015-6014-5 | es_ES |
dc.description.references | Wang, F., Yang, J., & Shah, S. (2020). Effect of Horizontal Restraints on Progressive Collapse Resistance of Precast Concrete Beam-Column Framed Substructures. KSCE Journal of Civil Engineering, 24(3), 879-889. doi:10.1007/s12205-020-1035-9 | es_ES |
dc.description.references | Zhang, H., Shu, G., & Pan, R. (2019). Failure Mechanism of Composite Frames Under the Corner Column-Removal Scenario. Journal of Failure Analysis and Prevention, 19(3), 649-664. doi:10.1007/s11668-019-00644-8 | es_ES |
dc.description.references | Micallef, K., Sagaseta, J., Fernández Ruiz, M., & Muttoni, A. (2014). Assessing punching shear failure in reinforced concrete flat slabs subjected to localised impact loading. International Journal of Impact Engineering, 71, 17-33. doi:10.1016/j.ijimpeng.2014.04.003 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |