- -

Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants

Show simple item record

Files in this item

dc.contributor.author CARBONELL, ALBERTO es_ES
dc.contributor.author Fahlgren, Noah es_ES
dc.contributor.author García-Ruíz, Hernan es_ES
dc.contributor.author Gilbert, Kerrigan B. es_ES
dc.contributor.author Montgomery, Taiowa A. es_ES
dc.contributor.author Nguyen, Tammy es_ES
dc.contributor.author Cuperus, Josh T. es_ES
dc.contributor.author Carrington, James C. es_ES
dc.date.accessioned 2021-02-10T04:31:25Z
dc.date.available 2021-02-10T04:31:25Z
dc.date.issued 2012-09 es_ES
dc.identifier.issn 1040-4651 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160977
dc.description.abstract [EN] In RNA-directed silencing pathways, ternary complexes result from small RNA-guided ARGONAUTE (AGO) associating with target transcripts. Target transcripts are often silenced through direct cleavage (slicing), destabilization through slicer-independent turnover mechanisms, and translational repression. Here, wild-type and active-site defective forms of several Arabidopsis thaliana AGO proteins involved in posttranscriptional silencing were used to examine several AGO functions, including small RNA binding, interaction with target RNA, slicing or destabilization of target RNA, secondary small interfering RNA formation, and antiviral activity. Complementation analyses in ago mutant plants revealed that the catalytic residues of AGO1, AGO2, and AGO7 are required to restore the defects of Arabidopsis ago1-25, ago2-1, and zip-1 (AGO7-defective) mutants, respectively. AGO2 had slicer activity in transient assays but could not trigger secondary small interfering RNA biogenesis, and catalytically active AGO2 was necessary for local and systemic antiviral activity against Turnip mosaic virus. Slicer-defective AGOs associated with miRNAs and stabilized AGO-miRNA-target RNA ternary complexes in individual target coimmunoprecipitation assays. In genome-wide AGO-miRNA-target RNA coimmunoprecipitation experiments, slicer-defective AGO1-miRNA associated with target RNA more effectively than did wild-type AGO1-miRNA. These data not only reveal functional roles for AGO1, AGO2, and AGO7 slicer activity, but also indicate an approach to capture ternary complexes more efficiently for genome-wide analyses. es_ES
dc.description.sponsorship We thank Goretti Nguyen for excellent technical assistance. A. C. was supported by a postdoctoral fellowship from the Ministerio de Ciencia e Innovacion (BMC-2008-0188). H.G.-R. was the recipient of a Helen Hay Whitney Postdoctoral fellowship (F-972). This work was supported by grants from the National Science Foundation (MCB-1231726), the National Institutes of Health (AI043288), and Monsanto Corporation. es_ES
dc.language Inglés es_ES
dc.publisher American Society of Plant Biologists es_ES
dc.relation NSF/MCB-1231726 es_ES
dc.relation NIH/AI043288 es_ES
dc.relation MICINN/BMC-2008-0188 es_ES
dc.relation HHWF/F-972 es_ES
dc.relation.ispartof The Plant Cell es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject MiRNA es_ES
dc.subject Argonaute es_ES
dc.subject RNA silencing es_ES
dc.title Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1105/tpc.112.099945 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Carbonell, A.; Fahlgren, N.; García-Ruíz, H.; Gilbert, KB.; Montgomery, TA.; Nguyen, T.; Cuperus, JT.... (2012). Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants. The Plant Cell. 24(9):3613-3629. https://doi.org/10.1105/tpc.112.099945 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1105/tpc.112.099945 es_ES
dc.description.upvformatpinicio 3613 es_ES
dc.description.upvformatpfin 3629 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 9 es_ES
dc.identifier.pmid 23023169 es_ES
dc.identifier.pmcid PMC3480291 es_ES
dc.relation.pasarela S\377810 es_ES
dc.contributor.funder Helen Hay Whitney Foundation es_ES
dc.contributor.funder National Science Foundation, EEUU es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.description.references Allen, E., Xie, Z., Gustafson, A. M., & Carrington, J. C. (2005). microRNA-Directed Phasing during Trans-Acting siRNA Biogenesis in Plants. Cell, 121(2), 207-221. doi:10.1016/j.cell.2005.04.004 es_ES
dc.description.references Aukerman, M. J., & Sakai, H. (2003). Regulation of Flowering Time and Floral Organ Identity by a MicroRNA and Its APETALA2-Like Target Genes. The Plant Cell, 15(11), 2730-2741. doi:10.1105/tpc.016238 es_ES
dc.description.references Axtell, M. J., Jan, C., Rajagopalan, R., & Bartel, D. P. (2006). A Two-Hit Trigger for siRNA Biogenesis in Plants. Cell, 127(3), 565-577. doi:10.1016/j.cell.2006.09.032 es_ES
dc.description.references Baek, D., Villén, J., Shin, C., Camargo, F. D., Gygi, S. P., & Bartel, D. P. (2008). The impact of microRNAs on protein output. Nature, 455(7209), 64-71. doi:10.1038/nature07242 es_ES
dc.description.references Baumberger, N., & Baulcombe, D. C. (2005). Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proceedings of the National Academy of Sciences, 102(33), 11928-11933. doi:10.1073/pnas.0505461102 es_ES
dc.description.references Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y. Y., Sieburth, L., & Voinnet, O. (2008). Widespread Translational Inhibition by Plant miRNAs and siRNAs. Science, 320(5880), 1185-1190. doi:10.1126/science.1159151 es_ES
dc.description.references Chekanova, J. A., Gregory, B. D., Reverdatto, S. V., Chen, H., Kumar, R., Hooker, T., … Belostotsky, D. A. (2007). Genome-Wide High-Resolution Mapping of Exosome Substrates Reveals Hidden Features in the Arabidopsis Transcriptome. Cell, 131(7), 1340-1353. doi:10.1016/j.cell.2007.10.056 es_ES
dc.description.references Chen, H.-M., Chen, L.-T., Patel, K., Li, Y.-H., Baulcombe, D. C., & Wu, S.-H. (2010). 22-nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proceedings of the National Academy of Sciences, 107(34), 15269-15274. doi:10.1073/pnas.1001738107 es_ES
dc.description.references Chen, X. (2004). A MicroRNA as a Translational Repressor of APETALA2 in Arabidopsis Flower Development. Science, 303(5666), 2022-2025. doi:10.1126/science.1088060 es_ES
dc.description.references Chi, S. W., Zang, J. B., Mele, A., & Darnell, R. B. (2009). Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature, 460(7254), 479-486. doi:10.1038/nature08170 es_ES
dc.description.references Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.x es_ES
dc.description.references Cuperus, J. T., Carbonell, A., Fahlgren, N., Garcia-Ruiz, H., Burke, R. T., Takeda, A., … Carrington, J. C. (2010). Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nature Structural & Molecular Biology, 17(8), 997-1003. doi:10.1038/nsmb.1866 es_ES
dc.description.references Curtis, M. D., & Grossniklaus, U. (2003). A Gateway Cloning Vector Set for High-Throughput Functional Analysis of Genes in Planta. Plant Physiology, 133(2), 462-469. doi:10.1104/pp.103.027979 es_ES
dc.description.references Dunoyer, P., Himber, C., & Voinnet, O. (2005). DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nature Genetics, 37(12), 1356-1360. doi:10.1038/ng1675 es_ES
dc.description.references Eulalio, A., Huntzinger, E., & Izaurralde, E. (2008). Getting to the Root of miRNA-Mediated Gene Silencing. Cell, 132(1), 9-14. doi:10.1016/j.cell.2007.12.024 es_ES
dc.description.references Fahlgren, N., Sullivan, C. M., Kasschau, K. D., Chapman, E. J., Cumbie, J. S., Montgomery, T. A., … Carrington, J. C. (2009). Computational and analytical framework for small RNA profiling by high-throughput sequencing. RNA, 15(5), 992-1002. doi:10.1261/rna.1473809 es_ES
dc.description.references Filipowicz, W., Bhattacharyya, S. N., & Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Reviews Genetics, 9(2), 102-114. doi:10.1038/nrg2290 es_ES
dc.description.references Gandikota, M., Birkenbihl, R. P., Höhmann, S., Cardon, G. H., Saedler, H., & Huijser, P. (2007). The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. The Plant Journal, 49(4), 683-693. doi:10.1111/j.1365-313x.2006.02983.x es_ES
dc.description.references Garcia-Ruiz, H., Takeda, A., Chapman, E. J., Sullivan, C. M., Fahlgren, N., Brempelis, K. J., & Carrington, J. C. (2010). Arabidopsis RNA-Dependent RNA Polymerases and Dicer-Like Proteins in Antiviral Defense and Small Interfering RNA Biogenesis during Turnip Mosaic Virus Infection  . The Plant Cell, 22(2), 481-496. doi:10.1105/tpc.109.073056 es_ES
dc.description.references Gasciolli, V., Mallory, A. C., Bartel, D. P., & Vaucheret, H. (2005). Partially Redundant Functions of Arabidopsis DICER-like Enzymes and a Role for DCL4 in Producing trans-Acting siRNAs. Current Biology, 15(16), 1494-1500. doi:10.1016/j.cub.2005.07.024 es_ES
dc.description.references Guo, H., Ingolia, N. T., Weissman, J. S., & Bartel, D. P. (2010). Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 466(7308), 835-840. doi:10.1038/nature09267 es_ES
dc.description.references Harvey, J. J. W., Lewsey, M. G., Patel, K., Westwood, J., Heimstädt, S., Carr, J. P., & Baulcombe, D. C. (2011). An Antiviral Defense Role of AGO2 in Plants. PLoS ONE, 6(1), e14639. doi:10.1371/journal.pone.0014639 es_ES
dc.description.references Havecker, E. R., Wallbridge, L. M., Hardcastle, T. J., Bush, M. S., Kelly, K. A., Dunn, R. M., … Baulcombe, D. C. (2010). TheArabidopsisRNA-Directed DNA Methylation Argonautes Functionally Diverge Based on Their Expression and Interaction with Target Loci  . The Plant Cell, 22(2), 321-334. doi:10.1105/tpc.109.072199 es_ES
dc.description.references Hendrickson, D. G., Hogan, D. J., McCullough, H. L., Myers, J. W., Herschlag, D., Ferrell, J. E., & Brown, P. O. (2009). Concordant Regulation of Translation and mRNA Abundance for Hundreds of Targets of a Human microRNA. PLoS Biology, 7(11), e1000238. doi:10.1371/journal.pbio.1000238 es_ES
dc.description.references Hunter, C., Sun, H., & Poethig, R. S. (2003). The Arabidopsis Heterochronic Gene ZIPPY Is an ARGONAUTE Family Member. Current Biology, 13(19), 1734-1739. doi:10.1016/j.cub.2003.09.004 es_ES
dc.description.references Huntzinger, E., & Izaurralde, E. (2011). Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nature Reviews Genetics, 12(2), 99-110. doi:10.1038/nrg2936 es_ES
dc.description.references Iki, T., Yoshikawa, M., Nishikiori, M., Jaudal, M. C., Matsumoto-Yokoyama, E., Mitsuhara, I., … Ishikawa, M. (2010). In Vitro Assembly of Plant RNA-Induced Silencing Complexes Facilitated by Molecular Chaperone HSP90. Molecular Cell, 39(2), 282-291. doi:10.1016/j.molcel.2010.05.014 es_ES
dc.description.references Jaubert, M., Bhattacharjee, S., Mello, A. F. S., Perry, K. L., & Moffett, P. (2011). ARGONAUTE2 Mediates RNA-Silencing Antiviral Defenses against Potato virus X in Arabidopsis    . Plant Physiology, 156(3), 1556-1564. doi:10.1104/pp.111.178012 es_ES
dc.description.references Ji, L., Liu, X., Yan, J., Wang, W., Yumul, R. E., Kim, Y. J., … Chen, X. (2011). ARGONAUTE10 and ARGONAUTE1 Regulate the Termination of Floral Stem Cells through Two MicroRNAs in Arabidopsis. PLoS Genetics, 7(3), e1001358. doi:10.1371/journal.pgen.1001358 es_ES
dc.description.references Kim, V. N., Han, J., & Siomi, M. C. (2009). Biogenesis of small RNAs in animals. Nature Reviews Molecular Cell Biology, 10(2), 126-139. doi:10.1038/nrm2632 es_ES
dc.description.references Lanet, E., Delannoy, E., Sormani, R., Floris, M., Brodersen, P., Crété, P., … Robaglia, C. (2009). Biochemical Evidence for Translational Repression by Arabidopsis MicroRNAs. The Plant Cell, 21(6), 1762-1768. doi:10.1105/tpc.108.063412 es_ES
dc.description.references Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10(3), R25. doi:10.1186/gb-2009-10-3-r25 es_ES
dc.description.references Leung, A. K. L., Young, A. G., Bhutkar, A., Zheng, G. X., Bosson, A. D., Nielsen, C. B., & Sharp, P. A. (2011). Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. Nature Structural & Molecular Biology, 18(2), 237-244. doi:10.1038/nsmb.1991 es_ES
dc.description.references Llave, C., Xie, Z., Kasschau, K. D., & Carrington, J. C. (2002). Cleavage of Scarecrow-like mRNA Targets Directed by a Class of Arabidopsis miRNA. Science, 297(5589), 2053-2056. doi:10.1126/science.1076311 es_ES
dc.description.references Lobbes, D., Rallapalli, G., Schmidt, D. D., Martin, C., & Clarke, J. (2006). SERRATE: a new player on the plant microRNA scene. EMBO reports, 7(10), 1052-1058. doi:10.1038/sj.embor.7400806 es_ES
dc.description.references Mallory, A., & Vaucheret, H. (2010). Form, Function, and Regulation of ARGONAUTE Proteins. The Plant Cell, 22(12), 3879-3889. doi:10.1105/tpc.110.080671 es_ES
dc.description.references Manavella, P. A., Koenig, D., & Weigel, D. (2012). Plant secondary siRNA production determined by microRNA-duplex structure. Proceedings of the National Academy of Sciences, 109(7), 2461-2466. doi:10.1073/pnas.1200169109 es_ES
dc.description.references Matranga, C., Tomari, Y., Shin, C., Bartel, D. P., & Zamore, P. D. (2005). Passenger-Strand Cleavage Facilitates Assembly of siRNA into Ago2-Containing RNAi Enzyme Complexes. Cell, 123(4), 607-620. doi:10.1016/j.cell.2005.08.044 es_ES
dc.description.references Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., … Qi, Y. (2008). Sorting of Small RNAs into Arabidopsis Argonaute Complexes Is Directed by the 5′ Terminal Nucleotide. Cell, 133(1), 116-127. doi:10.1016/j.cell.2008.02.034 es_ES
dc.description.references Montgomery, T. A., Howell, M. D., Cuperus, J. T., Li, D., Hansen, J. E., Alexander, A. L., … Carrington, J. C. (2008). Specificity of ARGONAUTE7-miR390 Interaction and Dual Functionality in TAS3 Trans-Acting siRNA Formation. Cell, 133(1), 128-141. doi:10.1016/j.cell.2008.02.033 es_ES
dc.description.references Montgomery, T. A., Yoo, S. J., Fahlgren, N., Gilbert, S. D., Howell, M. D., Sullivan, C. M., … Carrington, J. C. (2008). AGO1-miR173 complex initiates phased siRNA formation in plants. Proceedings of the National Academy of Sciences, 105(51), 20055-20062. doi:10.1073/pnas.0810241105 es_ES
dc.description.references Morel, J.-B., Godon, C., Mourrain, P., Béclin, C., Boutet, S., Feuerbach, F., … Vaucheret, H. (2002). Fertile Hypomorphic ARGONAUTE (ago1) Mutants Impaired in Post-Transcriptional Gene Silencing and Virus Resistance. The Plant Cell, 14(3), 629-639. doi:10.1105/tpc.010358 es_ES
dc.description.references Peragine, A. (2004). SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes & Development, 18(19), 2368-2379. doi:10.1101/gad.1231804 es_ES
dc.description.references Qi, Y., He, X., Wang, X.-J., Kohany, O., Jurka, J., & Hannon, G. J. (2006). Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature, 443(7114), 1008-1012. doi:10.1038/nature05198 es_ES
dc.description.references Rajagopalan, R., Vaucheret, H., Trejo, J., & Bartel, D. P. (2006). A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes & Development, 20(24), 3407-3425. doi:10.1101/gad.1476406 es_ES
dc.description.references Scholthof, H. B., Alvarado, V. Y., Vega-Arreguin, J. C., Ciomperlik, J., Odokonyero, D., Brosseau, C., … Moffett, P. (2011). Identification of an ARGONAUTE for Antiviral RNA Silencing in Nicotiana benthamiana        . Plant Physiology, 156(3), 1548-1555. doi:10.1104/pp.111.178764 es_ES
dc.description.references Song, J.-J., Smith, S. K., Hannon, G. J., & Joshua-Tor, L. (2004). Crystal Structure of Argonaute and Its Implications for RISC Slicer Activity. Science, 305(5689), 1434-1437. doi:10.1126/science.1102514 es_ES
dc.description.references Souret, F. F., Kastenmayer, J. P., & Green, P. J. (2004). AtXRN4 Degrades mRNA in Arabidopsis and Its Substrates Include Selected miRNA Targets. Molecular Cell, 15(2), 173-183. doi:10.1016/j.molcel.2004.06.006 es_ES
dc.description.references Wang, L., Si, Y., Dedow, L. K., Shao, Y., Liu, P., & Brutnell, T. P. (2011). A Low-Cost Library Construction Protocol and Data Analysis Pipeline for Illumina-Based Strand-Specific Multiplex RNA-Seq. PLoS ONE, 6(10), e26426. doi:10.1371/journal.pone.0026426 es_ES
dc.description.references Wang, X.-B., Jovel, J., Udomporn, P., Wang, Y., Wu, Q., Li, W.-X., … Ding, S.-W. (2011). The 21-Nucleotide, but Not 22-Nucleotide, Viral Secondary Small Interfering RNAs Direct Potent Antiviral Defense by Two Cooperative Argonautes in Arabidopsis thaliana    . The Plant Cell, 23(4), 1625-1638. doi:10.1105/tpc.110.082305 es_ES
dc.description.references Wang, Y., Juranek, S., Li, H., Sheng, G., Wardle, G. S., Tuschl, T., & Patel, D. J. (2009). Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature, 461(7265), 754-761. doi:10.1038/nature08434 es_ES
dc.description.references Wu, L., & Belasco, J. G. (2008). Let Me Count the Ways: Mechanisms of Gene Regulation by miRNAs and siRNAs. Molecular Cell, 29(1), 1-7. doi:10.1016/j.molcel.2007.12.010 es_ES
dc.description.references Xie, Z., Allen, E., Wilken, A., & Carrington, J. C. (2005). DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 102(36), 12984-12989. doi:10.1073/pnas.0506426102 es_ES
dc.description.references Yang, L., Wu, G., & Poethig, R. S. (2011). Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in Arabidopsis. Proceedings of the National Academy of Sciences, 109(1), 315-320. doi:10.1073/pnas.1114673109 es_ES
dc.description.references Yoshikawa, M. (2005). A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes & Development, 19(18), 2164-2175. doi:10.1101/gad.1352605 es_ES
dc.description.references Zhang, X., Zhao, H., Gao, S., Wang, W.-C., Katiyar-Agarwal, S., Huang, H.-D., … Jin, H. (2011). Arabidopsis Argonaute 2 Regulates Innate Immunity via miRNA393∗-Mediated Silencing of a Golgi-Localized SNARE Gene, MEMB12. Molecular Cell, 42(3), 356-366. doi:10.1016/j.molcel.2011.04.010 es_ES
dc.description.references Zhu, H., Hu, F., Wang, R., Zhou, X., Sze, S.-H., Liou, L. W., … Zhang, X. (2011). Arabidopsis Argonaute10 Specifically Sequesters miR166/165 to Regulate Shoot Apical Meristem Development. Cell, 145(2), 242-256. doi:10.1016/j.cell.2011.03.024 es_ES
dc.description.references Zisoulis, D. G., Lovci, M. T., Wilbert, M. L., Hutt, K. R., Liang, T. Y., Pasquinelli, A. E., & Yeo, G. W. (2010). Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nature Structural & Molecular Biology, 17(2), 173-179. doi:10.1038/nsmb.1745 es_ES


This item appears in the following Collection(s)

Show simple item record