- -

Constructing reliable approximations of the probability density function to the random heat PDE via a finite difference scheme

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Constructing reliable approximations of the probability density function to the random heat PDE via a finite difference scheme

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Calatayud, J. es_ES
dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author Díaz, J.A. es_ES
dc.contributor.author Jornet, M. es_ES
dc.date.accessioned 2021-02-10T04:31:28Z
dc.date.available 2021-02-10T04:31:28Z
dc.date.issued 2020-05 es_ES
dc.identifier.issn 0168-9274 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160979
dc.description.abstract [EN] We study the random heat partial differential equation on a bounded domain assuming that the diffusion coefficient and the boundary conditions are random variables, and the initial condition is a stochastic process. Under general conditions, this stochastic system possesses a unique solution stochastic process in the almost sure and mean square senses. To quantify the uncertainty for this solution process, the computation of the probability density function is a major goal. By using a random finite difference scheme, we approximate the stochastic solution at each point by a sequence of random variables, whose probability density functions are computable, i.e., we construct a sequence of approximating density functions. We include numerical experiments to illustrate the applicability of our method. es_ES
dc.description.sponsorship This work has been supported by the Spanish Ministerio de Economia y Competitividad grant MTM2017-89664-P. The co-author Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y Desarrollo (PAID), Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Applied Numerical Mathematics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Uncertainty quantification es_ES
dc.subject Random heat partial differential equation es_ES
dc.subject Finite difference scheme es_ES
dc.subject Probability density function es_ES
dc.subject Numerical method es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Constructing reliable approximations of the probability density function to the random heat PDE via a finite difference scheme es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.apnum.2020.01.012 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Calatayud, J.; Cortés, J.; Díaz, J.; Jornet, M. (2020). Constructing reliable approximations of the probability density function to the random heat PDE via a finite difference scheme. Applied Numerical Mathematics. 151:413-424. https://doi.org/10.1016/j.apnum.2020.01.012 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.apnum.2020.01.012 es_ES
dc.description.upvformatpinicio 413 es_ES
dc.description.upvformatpfin 424 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 151 es_ES
dc.relation.pasarela S\400592 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Calatayud, J., Cortés, J.-C., & Jornet, M. (2018). The damped pendulum random differential equation: A comprehensive stochastic analysis via the computation of the probability density function. Physica A: Statistical Mechanics and its Applications, 512, 261-279. doi:10.1016/j.physa.2018.08.024 es_ES
dc.description.references Casabán, M.-C., Company, R., Cortés, J.-C., & Jódar, L. (2014). Solving the random diffusion model in an infinite medium: A mean square approach. Applied Mathematical Modelling, 38(24), 5922-5933. doi:10.1016/j.apm.2014.04.063 es_ES
dc.description.references Casabán, M.-C., Cortés, J.-C., & Jódar, L. (2016). Solving random mixed heat problems: A random integral transform approach. Journal of Computational and Applied Mathematics, 291, 5-19. doi:10.1016/j.cam.2014.09.021 es_ES
dc.description.references Cortés, J. C., Sevilla-Peris, P., & Jódar, L. (2005). Analytic-numerical approximating processes of diffusion equation with data uncertainty. Computers & Mathematics with Applications, 49(7-8), 1255-1266. doi:10.1016/j.camwa.2004.05.015 es_ES
dc.description.references Cortés, J. C., Sevilla-Peris, P., & Jódar, L. (2006). Constructing approximate diffusion processes with uncertain data. Mathematics and Computers in Simulation, 73(1-4), 125-132. doi:10.1016/j.matcom.2006.06.009 es_ES
dc.description.references Cortés, J.-C., Romero, J.-V., Roselló, M.-D., & Villanueva, R.-J. (2017). Improving adaptive generalized polynomial chaos method to solve nonlinear random differential equations by the random variable transformation technique. Communications in Nonlinear Science and Numerical Simulation, 50, 1-15. doi:10.1016/j.cnsns.2017.02.011 es_ES
dc.description.references Debussche, A., & Printems, J. (2008). Weak order for the discretization of the stochastic heat equation. Mathematics of Computation, 78(266), 845-863. doi:10.1090/s0025-5718-08-02184-4 es_ES
dc.description.references Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160-173. doi:10.1016/j.cnsns.2015.09.009 es_ES
dc.description.references Geissert, M., Kovács, M., & Larsson, S. (2009). Rate of weak convergence of the finite element method for the stochastic heat equation with additive noise. BIT Numerical Mathematics, 49(2), 343-356. doi:10.1007/s10543-009-0227-y es_ES
dc.description.references Heydari, M. H., Hooshmandasl, M. R., Barid Loghmani, G., & Cattani, C. (2015). Wavelets Galerkin method for solving stochastic heat equation. International Journal of Computer Mathematics, 93(9), 1579-1596. doi:10.1080/00207160.2015.1067311 es_ES
dc.description.references Hien, T. D., & Kleiber, M. (1997). Stochastic finite element modelling in linear transient heat transfer. Computer Methods in Applied Mechanics and Engineering, 144(1-2), 111-124. doi:10.1016/s0045-7825(96)01168-1 es_ES
dc.description.references Lord, G. J., & Tambue, A. (2019). Stochastic exponential integrators for a finite element discretisation of SPDEs with additive noise. Applied Numerical Mathematics, 136, 163-182. doi:10.1016/j.apnum.2018.10.008 es_ES
dc.description.references Lord, G. J., Powell, C. E., & Shardlow, T. (2009). An Introduction to Computational Stochastic PDEs. doi:10.1017/cbo9781139017329 es_ES
dc.description.references Nouri, K., Ranjbar, H., & Torkzadeh, L. (2019). Modified stochastic theta methods by ODEs solvers for stochastic differential equations. Communications in Nonlinear Science and Numerical Simulation, 68, 336-346. doi:10.1016/j.cnsns.2018.08.013 es_ES
dc.description.references Slama, H., El-Bedwhey, N. A., El-Depsy, A., & Selim, M. M. (2017). Solution of the finite Milne problem in stochastic media with RVT Technique. The European Physical Journal Plus, 132(12). doi:10.1140/epjp/i2017-11763-6 es_ES
dc.description.references Xiu, D., & Karniadakis, G. E. (2003). A new stochastic approach to transient heat conduction modeling with uncertainty. International Journal of Heat and Mass Transfer, 46(24), 4681-4693. doi:10.1016/s0017-9310(03)00299-0 es_ES
dc.description.references Xu, Z. (2014). A stochastic analysis of steady and transient heat conduction in random media using a homogenization approach. Applied Mathematical Modelling, 38(13), 3233-3243. doi:10.1016/j.apm.2013.11.044 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem