- -

Calibration of the descent local search algorithm parameters using orthogonal arrays

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Calibration of the descent local search algorithm parameters using orthogonal arrays

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gisbert, Carlos M. es_ES
dc.contributor.author Lozano-Galant, Jose A. es_ES
dc.contributor.author Paya-Zaforteza, Ignacio es_ES
dc.contributor.author Turmo, Jose es_ES
dc.date.accessioned 2021-02-10T04:31:33Z
dc.date.available 2021-02-10T04:31:33Z
dc.date.issued 2020-09 es_ES
dc.identifier.issn 1093-9687 es_ES
dc.identifier.uri http://hdl.handle.net/10251/160982
dc.description This is the peer reviewed version of the following article: Gisbert, CM, Lozano-Galant, JA, Paya-Zaforteza, I, Turmo, J. Calibration of the descent local search algorithm parameters using orthogonal arrays. Comput Aided Civ Inf. 2020; 35: 997-1008, which has been published in final form at https://doi.org/10.1111/mice.12545. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] Solving optimization problems using heuristic algorithms requires the selection of its parameters. Traditionally, these parameters are selected by a trial and error process that cannot guarantee the quality of the results obtained because not all the potential combinations of parameters are checked. To fill this gap, this paper proposes the application of Taguchi's orthogonal arrays to calibrate the parameters of a heuristic optimization algorithm (the descent local search algorithm). This process is based on the study of the combinations of discrete values of the heuristic tool parameters and it enables optimization of the heuristic tool performance with a reduced computational effort. To check its efficiency, this methodology is applied to a technical challenge never studied before: the optimization of the tensioning process of cable-stayed bridges. The statistical improvement of the heuristic tool performance is studied by the optimization of the tensioning process of a real cable-stayed bridge. Results show that the proposed calibration technique provided robust values of the objective function (with lower minimum and mean values, and lower standard deviation) with reduced computational cost. es_ES
dc.description.sponsorship The authors are indebted to the Spanish Ministry of Economy and Competitiveness for the funding provided through the research projects BIA2013-47290-R and BIA2017-86811-C2-1-R founded with FEDER funds and directed by Professor Jose Turmo and through the research project BIA2017-86811-C2-2-R directed by Jose Antonio Lozano-Galant. es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Computer-Aided Civil and Infrastructure Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Calibration of the descent local search algorithm parameters using orthogonal arrays es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/mice.12545 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIA2013-47290-R/ES/SISTEMA DE APOYO A LA TOMA DE DECISIONES DURANTE EL CICLO DE VIDA DE LAS INFRAESTRUCTURAS: SMART-INFRASTRUCTURES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-86811-C2-1-R/ES/MODELOS ESTRUCTURALES PARA LA GESTION EFICIENTE DE INFRAESTRUCTURAS: SMART BIM MODELS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-86811-C2-2-R/ES/CALIBRACION DE MODELOS BIM MEDIANTE SENSORES DE BAJO COSTE PARA LA OPTIMIZACION ENERGETICA DE EDIFICIOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Gisbert, CM.; Lozano-Galant, JA.; Paya-Zaforteza, I.; Turmo, J. (2020). Calibration of the descent local search algorithm parameters using orthogonal arrays. Computer-Aided Civil and Infrastructure Engineering. 35(9):997-1008. https://doi.org/10.1111/mice.12545 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/mice.12545 es_ES
dc.description.upvformatpinicio 997 es_ES
dc.description.upvformatpfin 1008 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 35 es_ES
dc.description.issue 9 es_ES
dc.relation.pasarela S\415035 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Adeli, H., & Zhang, J. (1995). Fully nonlinear analysis of composite girder cable-stayed bridges. Computers & Structures, 54(2), 267-277. doi:10.1016/0045-7949(94)00332-w es_ES
dc.description.references Arıcı, E., & Keleştemur, O. (2019). Optimization of mortars containing steel scale using Taguchi based grey relational analysis method. Construction and Building Materials, 214, 232-241. doi:10.1016/j.conbuildmat.2019.04.135 es_ES
dc.description.references Behin, Z., & Murray, D. W. (1992). A substructure-frontal technique for cantilever erection analysis of cable-stayed bridges. Computers & Structures, 42(2), 145-157. doi:10.1016/0045-7949(92)90200-j es_ES
dc.description.references Cao, Y.-F., Tao, Z., Pan, Z., & Wuhrer, R. (2018). Effect of calcium aluminate cement on geopolymer concrete cured at ambient temperature. Construction and Building Materials, 191, 242-252. doi:10.1016/j.conbuildmat.2018.09.204 es_ES
dc.description.references Carbonell, A., González-Vidosa, F., & Yepes, V. (2011). Design of reinforced concrete road vaults by heuristic optimization. Advances in Engineering Software, 42(4), 151-159. doi:10.1016/j.advengsoft.2011.01.002 es_ES
dc.description.references Chao, L.-C., & Kuo, C.-P. (2017). Optimizing the ultimate strength of precast reinforced concrete pipes in three-edge bearing tests. Structural Concrete, 19(4), 1174-1184. doi:10.1002/suco.201700143 es_ES
dc.description.references Chikahiro, Y., Ario, I., Pawlowski, P., Graczykowski, C., & Holnicki‐Szulc, J. (2019). Optimization of reinforcement layout of scissor‐type bridge using differential evolution algorithm. Computer-Aided Civil and Infrastructure Engineering, 34(6), 523-538. doi:10.1111/mice.12432 es_ES
dc.description.references Fabbrocino, F., Modano, M., Farina, I., Carpentieri, G., & Fraternali, F. (2017). Optimal prestress design of composite cable-stayed bridges. Composite Structures, 169, 167-172. doi:10.1016/j.compstruct.2016.09.008 es_ES
dc.description.references García-Segura, T., Yepes, V., Martí, J. V., & Alcalá, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7), 1190-1205. doi:10.1590/s1679-78252014000700007 es_ES
dc.description.references Imran Hossain, S., Akhand, M. A. H., Shuvo, M. I. R., Siddique, N., & Adeli, H. (2019). Optimization of University Course Scheduling Problem using Particle Swarm Optimization with Selective Search. Expert Systems with Applications, 127, 9-24. doi:10.1016/j.eswa.2019.02.026 es_ES
dc.description.references Janjic, D., Pircher, M., & Pircher, H. (2003). Optimization of Cable Tensioning in Cable-Stayed Bridges. Journal of Bridge Engineering, 8(3), 131-137. doi:10.1061/(asce)1084-0702(2003)8:3(131) es_ES
dc.description.references Jorquera-Lucerga, J. J., Lozano-Galant, J. A., & Turmo, J. (2016). Structural behavior of non-symmetrical steel cable-stayed bridges. Steel and Composite Structures, 20(2), 447-468. doi:10.12989/scs.2016.20.2.447 es_ES
dc.description.references Kim, H., & Adeli, H. (2005). Wavelet-Hybrid Feedback Linear Mean Squared Algorithm for Robust Control of Cable-Stayed Bridges. Journal of Bridge Engineering, 10(2), 116-123. doi:10.1061/(asce)1084-0702(2005)10:2(116) es_ES
dc.description.references Lazar, B. E., Troitsky, M. S., & Douglass, M. M. (1972). Load Balancing Analysis of Cable Stayed Bridges. Journal of the Structural Division, 98(8), 1725-1740. doi:10.1061/jsdeag.0003299 es_ES
dc.description.references Lozano-Galant, J. A., Nogal, M., Turmo, J., & Castillo, E. (2015). Selection of measurement sets in static structural identification of bridges using observability trees. Computers and Concrete, 15(5), 771-794. doi:10.12989/cac.2015.15.5.771 es_ES
dc.description.references Lozano-Galant, J. A., & Paya-Zaforteza, I. (2017). Analysis of Eduardo Torroja’s Tempul Aqueduct an important precursor of modern cable-stayed bridges, extradosed bridges and prestressed concrete. Engineering Structures, 150, 955-968. doi:10.1016/j.engstruct.2017.07.057 es_ES
dc.description.references Lozano-Galant, J. A., Payá-Zaforteza, I., & Turmo, J. (2015). Effects in service of the staggered construction of cable-stayed bridges built on temporary supports. The Baltic Journal of Road and Bridge Engineering, 10(3), 247-254. doi:10.3846/bjrbe.2015.31 es_ES
dc.description.references Lozano-Galant, J. A., Payá-Zaforteza, I., Xu, D., & Turmo, J. (2012). Analysis of the construction process of cable-stayed bridges built on temporary supports. Engineering Structures, 40, 95-106. doi:10.1016/j.engstruct.2012.02.005 es_ES
dc.description.references Lozano-Galant, J. A., Payá-Zaforteza, I., Xu, D., & Turmo, J. (2012). Forward Algorithm for the construction control of cable-stayed bridges built on temporary supports. Engineering Structures, 40, 119-130. doi:10.1016/j.engstruct.2012.02.022 es_ES
dc.description.references Lozano-Galant, J. A., & Turmo, J. (2014). Creep and shrinkage effects in service stresses of concrete cable-stayed bridges. Computers and Concrete, 13(4), 483-499. doi:10.12989/cac.2014.13.4.483 es_ES
dc.description.references Lozano-Galant, J. A., & Turmo, J. (2014). An algorithm for simulation of concrete cable-stayed bridges built on temporary supports and considering time dependent effects. Engineering Structures, 79, 341-353. doi:10.1016/j.engstruct.2014.08.018 es_ES
dc.description.references Lozano-Galant, J. A., Dong, X., Payá-Zaforteza, I., & Turmo, J. (2013). Direct simulation of the tensioning process of cable-stayed bridges. Computers & Structures, 121, 64-75. doi:10.1016/j.compstruc.2013.03.010 es_ES
dc.description.references Manjunath, R., Narasimhan, M. C., Umesh, K. M., Shivam Kumar, & Bala Bharathi, U. K. (2019). Studies on development of high performance, self-compacting alkali activated slag concrete mixes using industrial wastes. Construction and Building Materials, 198, 133-147. doi:10.1016/j.conbuildmat.2018.11.242 es_ES
dc.description.references Martins, A. M. B., Simões, L. M. C., & Negrão, J. H. J. O. (2015). Optimum design of concrete cable-stayed bridges. Engineering Optimization, 48(5), 772-791. doi:10.1080/0305215x.2015.1057057 es_ES
dc.description.references Haji Agha Mohammad Zarbaf, S. E., Norouzi, M., Allemang, R. J., Hunt, V. J., & Helmicki, A. (2017). Stay Cable Tension Estimation of Cable-Stayed Bridges Using Genetic Algorithm and Particle Swarm Optimization. Journal of Bridge Engineering, 22(10), 05017008. doi:10.1061/(asce)be.1943-5592.0001130 es_ES
dc.description.references Penadés-Plà, V., García-Segura, T., & Yepes, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179, 556-565. doi:10.1016/j.engstruct.2018.11.015 es_ES
dc.description.references Siddique, N., & Adeli, H. (2014). Water Drop Algorithms. International Journal on Artificial Intelligence Tools, 23(06), 1430002. doi:10.1142/s0218213014300026 es_ES
dc.description.references Siddique, N., & Adeli, H. (2014). Spiral Dynamics Algorithm. International Journal on Artificial Intelligence Tools, 23(06), 1430001. doi:10.1142/s0218213014300014 es_ES
dc.description.references Siddique, N., & Adeli, H. (2015). Harmony Search Algorithm and its Variants. International Journal of Pattern Recognition and Artificial Intelligence, 29(08), 1539001. doi:10.1142/s0218001415390012 es_ES
dc.description.references Siddique, N., & Adeli, H. (2016). Simulated Annealing, Its Variants and Engineering Applications. International Journal on Artificial Intelligence Tools, 25(06), 1630001. doi:10.1142/s0218213016300015 es_ES
dc.description.references Siddique, N., & Adeli, H. (2017). Nature-Inspired Chemical Reaction Optimisation Algorithms. Cognitive Computation, 9(4), 411-422. doi:10.1007/s12559-017-9485-1 es_ES
dc.description.references Siddique, N., & Adeli, H. (2017). Nature-Inspired Computing. doi:10.1201/9781315118628 es_ES
dc.description.references Sung, Y.-C., Wang, C.-Y., & Teo, E.-H. (2015). Application of particle swarm optimisation to construction planning for cable-stayed bridges by the cantilever erection method. Structure and Infrastructure Engineering, 12(2), 208-222. doi:10.1080/15732479.2015.1008521 es_ES
dc.description.references Taguchi G. Chowdhury S. &Taguchi S.(1999).Robust engineering: Learn how to boost quality while reducing costs & time to market.New York:McGraw‐Hill. es_ES
dc.description.references Taguchi, G., Chowdhury, S., & Wu, Y. (2004). Taguchi’s Quality Engineering Handbook. doi:10.1002/9780470258354 es_ES
dc.description.references Tao, C., Watts, B., Ferraro, C. C., & Masters, F. J. (2018). A Multivariate Computational Framework to Characterize and Rate Virtual Portland Cements. Computer-Aided Civil and Infrastructure Engineering, 34(3), 266-278. doi:10.1111/mice.12413 es_ES
dc.description.references Wang, J., Zhong, D., Adeli, H., Wang, D., & Liu, M. (2018). Smart bacteria-foraging algorithm-based customized kernel support vector regression and enhanced probabilistic neural network for compaction quality assessment and control of earth-rock dam. Expert Systems, 35(6), e12357. doi:10.1111/exsy.12357 es_ES
dc.description.references Wang, P.-H., Tang, T.-Y., & Zheng, H.-N. (2004). Analysis of cable-stayed bridges during construction by cantilever methods. Computers & Structures, 82(4-5), 329-346. doi:10.1016/j.compstruc.2003.11.003 es_ES
dc.description.references Wu, W.-H., Chen, C.-C., Jhou, J.-W., & Lai, G. (2018). A Rapidly Convergent Empirical Mode Decomposition Method for Analyzing the Environmental Temperature Effects on Stay Cable Force. Computer-Aided Civil and Infrastructure Engineering, 33(8), 672-690. doi:10.1111/mice.12355 es_ES
dc.description.references Xu, M., Ouyang, M., Mao, Z., & Xu, X. (2019). Improving repair sequence scheduling methods for postdisaster critical infrastructure systems. Computer-Aided Civil and Infrastructure Engineering, 34(6), 506-522. doi:10.1111/mice.12435 es_ES
dc.description.references Ye, X., Sun, Z., & Huang, G. (2017). Assessment of the Current State of Internal Force and the Optimization of Cable Force for an Existing Long-span Pre-Stressed Concrete (PC) Cable-stayed Bridge. The Open Civil Engineering Journal, 11(1), 572-585. doi:10.2174/1874149501711010572 es_ES
dc.description.references Yepes, V., Dasí-Gil, M., Martínez-Muñoz, D., López-Desfilis, V. J., & Martí, J. V. (2019). Heuristic Techniques for the Design of Steel-Concrete Composite Pedestrian Bridges. Applied Sciences, 9(16), 3253. doi:10.3390/app9163253 es_ES
dc.description.references Yin, Y., Li, D., Bešinović, N., & Cao, Z. (2018). Hybrid Demand-Driven and Cyclic Timetabling Considering Rolling Stock Circulation for a Bidirectional Railway Line. Computer-Aided Civil and Infrastructure Engineering, 34(2), 164-187. doi:10.1111/mice.12414 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem