- -

Mathematical Modeling of the Biogas Production in MSW Landfills. Impact of the Implementation of Organic Matter and Food Waste Selective Collection Systems

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Mathematical Modeling of the Biogas Production in MSW Landfills. Impact of the Implementation of Organic Matter and Food Waste Selective Collection Systems

Show full item record

Rodrigo-Ilarri, J.; Rodrigo-Clavero, M. (2020). Mathematical Modeling of the Biogas Production in MSW Landfills. Impact of the Implementation of Organic Matter and Food Waste Selective Collection Systems. Atmosphere. 11(12):1-18. https://doi.org/10.3390/atmos11121306

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/160988

Files in this item

Item Metadata

Title: Mathematical Modeling of the Biogas Production in MSW Landfills. Impact of the Implementation of Organic Matter and Food Waste Selective Collection Systems
Author: Rodrigo-Ilarri, Javier Rodrigo-Clavero, María-Elena
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Issued date:
Abstract:
[EN] Municipal solid waste (MSW) landfills are one of the main sources of greenhouse gas emissions. Biogas is formed under anaerobic conditions by decomposition of the organic matter present in waste. The estimation of ...[+]
Subjects: Landfill , Biogas , Modeling , Simulation , Municipal solid waste
Copyrigths: Reconocimiento (by)
Source:
Atmosphere. (eissn: 2073-4433 )
DOI: 10.3390/atmos11121306
Publisher:
MDPI
Publisher version: https://doi.org/10.3390/atmos11121306
Type: Artículo

References

Calculation of CH4 and CO2 Emission Rate in Kahrizak Landfill Site THROUGH LandGEM Mathematical Model. In Proceedings of the 4th World Sustainability Forumhttps://sciforum.net/conference/wsf-4

Krause, M. J., W. Chickering, G., Townsend, T. G., & Reinhart, D. R. (2016). Critical review of the methane generation potential of municipal solid waste. Critical Reviews in Environmental Science and Technology, 46(13), 1117-1182. doi:10.1080/10643389.2016.1204812

Allen, M. R., Braithwaite, A., & Hills, C. C. (1997). Trace Organic Compounds in Landfill Gas at Seven U.K. Waste Disposal Sites. Environmental Science & Technology, 31(4), 1054-1061. doi:10.1021/es9605634 [+]
Calculation of CH4 and CO2 Emission Rate in Kahrizak Landfill Site THROUGH LandGEM Mathematical Model. In Proceedings of the 4th World Sustainability Forumhttps://sciforum.net/conference/wsf-4

Krause, M. J., W. Chickering, G., Townsend, T. G., & Reinhart, D. R. (2016). Critical review of the methane generation potential of municipal solid waste. Critical Reviews in Environmental Science and Technology, 46(13), 1117-1182. doi:10.1080/10643389.2016.1204812

Allen, M. R., Braithwaite, A., & Hills, C. C. (1997). Trace Organic Compounds in Landfill Gas at Seven U.K. Waste Disposal Sites. Environmental Science & Technology, 31(4), 1054-1061. doi:10.1021/es9605634

Eklund, B., Anderson, E. P., Walker, B. L., & Burrows, D. B. (1998). Characterization of Landfill Gas Composition at the Fresh Kills Municipal Solid-Waste Landfill. Environmental Science & Technology, 32(15), 2233-2237. doi:10.1021/es980004s

Rey, M. D., Font, R., & Aracil, I. (2013). Biogas from MSW landfill: Composition and determination of chlorine content with the AOX (adsorbable organically bound halogens) technique. Energy, 63, 161-167. doi:10.1016/j.energy.2013.09.017

Harborth, P., Fuß, R., Münnich, K., Flessa, H., & Fricke, K. (2013). Spatial variability of nitrous oxide and methane emissions from an MBT landfill in operation: Strong N2O hotspots at the working face. Waste Management, 33(10), 2099-2107. doi:10.1016/j.wasman.2013.01.028

Brown, K. A., & Maunder, D. H. (1994). Exploitation of landfill gas: a UK perspective. Water Science and Technology, 30(12), 143-151. doi:10.2166/wst.1994.0599

Abbasi, T., Tauseef, S. M., & Abbasi, S. A. (2012). Biogas Energy. doi:10.1007/978-1-4614-1040-9

El-Fadel, M., Findikakis, A. N., & Leckie, J. O. (1997). Environmental Impacts of Solid Waste Landfilling. Journal of Environmental Management, 50(1), 1-25. doi:10.1006/jema.1995.0131

Levis, J. W., & Barlaz, M. A. (2011). Is Biodegradability a Desirable Attribute for Discarded Solid Waste? Perspectives from a National Landfill Greenhouse Gas Inventory Model. Environmental Science & Technology, 45(13), 5470-5476. doi:10.1021/es200721s

Farquhar, G. J., & Rovers, F. A. (1973). Gas production during refuse decomposition. Water, Air, & Soil Pollution, 2(4), 483-495. doi:10.1007/bf00585092

Rees, J. F. (2007). Optimisation of methane production and refuse decomposition in landfills by temperature control. Journal of Chemical Technology and Biotechnology, 30(1), 458-465. doi:10.1002/jctb.503300158

Kasali, G. B., Senior, E., & Watson-Craik, I. A. (1990). Solid-state refuse methanogenic fermentation: control and promotion by water addition. Letters in Applied Microbiology, 11(1), 22-26. doi:10.1111/j.1472-765x.1990.tb00127.x

Gurijala, K. R., & Suflita, J. M. (1993). Environmental factors influencing methanogenesis from refuse in landfill samples. Environmental Science & Technology, 27(6), 1176-1181. doi:10.1021/es00043a018

Shariatmad, N., Sabour, M. R., Kamalan, H., Mansouri, A., & Abolfazlza, M. (2007). Applying Simple Numerical Model to Predict Methane Emission from Landfill. Journal of Applied Sciences, 7(11), 1511-1515. doi:10.3923/jas.2007.1511.1515

Peer, R. L., Thorneloe, S. A., & Epperson, D. L. (1993). A comparison of methods for estimating global methane emissions from landfills. Chemosphere, 26(1-4), 387-400. doi:10.1016/0045-6535(93)90433-6

Kamalan, H., Sabour, M., & Shariatmad, N. (2011). A Review on Available Landfill Gas Models. Journal of Environmental Science and Technology, 4(2), 79-92. doi:10.3923/jest.2011.79.92

Majdinasab, A., Zhang, Z., & Yuan, Q. (2017). Modelling of landfill gas generation: a review. Reviews in Environmental Science and Bio/Technology, 16(2), 361-380. doi:10.1007/s11157-017-9425-2

Buswell, A. M., & Mueller, H. F. (1952). Mechanism of Methane Fermentation. Industrial & Engineering Chemistry, 44(3), 550-552. doi:10.1021/ie50507a033

Symons, G. E., & Buswell, A. M. (1933). The Methane Fermentation of Carbohydrates1,2. Journal of the American Chemical Society, 55(5), 2028-2036. doi:10.1021/ja01332a039

Boyle, W. C. (1977). ENERGY RECOVERY FROM SANITARY LANDFILLS - A REVIEW. Microbial Energy Conversion, 119-138. doi:10.1016/b978-0-08-021791-8.50019-6

GARCIADECORTAZAR, A., & MONZON, I. (2007). MODUELO 2: A new version of an integrated simulation model for municipal solid waste landfills. Environmental Modelling & Software, 22(1), 59-72. doi:10.1016/j.envsoft.2005.11.003

White, J. K., & Beaven, R. P. (2013). Developments to a landfill processes model following its application to two landfill modelling challenges. Waste Management, 33(10), 1969-1981. doi:10.1016/j.wasman.2012.12.006

McDougall, J. (2007). A hydro-bio-mechanical model for settlement and other behaviour in landfilled waste. Computers and Geotechnics, 34(4), 229-246. doi:10.1016/j.compgeo.2007.02.004

Bareither, C. A., Benson, C. H., & Edil, T. B. (2013). Compression of Municipal Solid Waste in Bioreactor Landfills: Mechanical Creep and Biocompression. Journal of Geotechnical and Geoenvironmental Engineering, 139(7), 1007-1021. doi:10.1061/(asce)gt.1943-5606.0000835

Lu, S.-F., Xiong, J.-H., Feng, S.-J., Chen, H.-X., Bai, Z.-B., Fu, W.-D., & Lü, F. (2019). A finite-volume numerical model for bio-hydro-mechanical behaviors of municipal solid waste in landfills. Computers and Geotechnics, 109, 204-219. doi:10.1016/j.compgeo.2019.01.012

Liu, X., Shi, J., Qian, X., Hu, Y., & Peng, G. (2011). One-dimensional model for municipal solid waste (MSW) settlement considering coupled mechanical-hydraulic-gaseous effect and concise calculation. Waste Management, 31(12), 2473-2483. doi:10.1016/j.wasman.2011.07.013

Hettiarachchi, H., Meegoda, J., & Hettiaratchi, P. (2009). Effects of gas and moisture on modeling of bioreactor landfill settlement. Waste Management, 29(3), 1018-1025. doi:10.1016/j.wasman.2008.08.018

Chen, Y., Xu, X., & Zhan, L. (2011). Analysis of solid-liquid-gas interactions in landfilled municipal solid waste by a bio-hydro-mechanical coupled model. Science China Technological Sciences, 55(1), 81-89. doi:10.1007/s11431-011-4667-7

Staub, M. J., Gourc, J.-P., Drut, N., Stoltz, G., & Mansour, A. A. (2013). Large-Scale Bioreactor Pilots for Monitoring the Long-Term Hydromechanics of MSW. Journal of Hazardous, Toxic, and Radioactive Waste, 17(4), 285-294. doi:10.1061/(asce)hz.2153-5515.0000160

Machado, S. L., Vilar, O. M., & Carvalho, M. F. (2008). Constitutive model for long term municipal solid waste mechanical behavior. Computers and Geotechnics, 35(5), 775-790. doi:10.1016/j.compgeo.2007.11.008

Hettiarachchi, C. H., Meegoda, J. N., Tavantzis, J., & Hettiaratchi, P. (2007). Numerical model to predict settlements coupled with landfill gas pressure in bioreactor landfills. Journal of Hazardous Materials, 139(3), 514-522. doi:10.1016/j.jhazmat.2006.02.067

Sivakumar Babu, G. L., Reddy, K. R., Chouskey, S. K., & Kulkarni, H. S. (2010). Prediction of Long-Term Municipal Solid Waste Landfill Settlement Using Constitutive Model. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 14(2), 139-150. doi:10.1061/(asce)hz.1944-8376.0000024

Hanson, J. L., Yeşiller, N., Onnen, M. T., Liu, W.-L., Oettle, N. K., & Marinos, J. A. (2013). Development of numerical model for predicting heat generation and temperatures in MSW landfills. Waste Management, 33(10), 1993-2000. doi:10.1016/j.wasman.2013.04.003

Gawande, N. A., Reinhart, D. R., & Yeh, G.-T. (2010). Modeling microbiological and chemical processes in municipal solid waste bioreactor, part I: Development of a three-phase numerical model BIOKEMOD-3P. Waste Management, 30(2), 202-210. doi:10.1016/j.wasman.2009.09.009

GHOLAMIFARD, S., EYMARD, R., & DUQUENNOI, C. (2008). Modeling anaerobic bioreactor landfills in methanogenic phase: Long term and short term behaviors. Water Research, 42(20), 5061-5071. doi:10.1016/j.watres.2008.09.040

Garg, A., & Achari, G. (2010). A Comprehensive Numerical Model Simulating Gas, Heat, and Moisture Transport in Sanitary Landfills and Methane Oxidation in Final Covers. Environmental Modeling & Assessment, 15(5), 397-410. doi:10.1007/s10666-009-9217-3

Feng, S.-J., Lu, S.-F., Chen, H. X., Fu, W.-D., & Lü, F. (2017). Three-dimensional modelling of coupled leachate and gas flow in bioreactor landfills. Computers and Geotechnics, 84, 138-151. doi:10.1016/j.compgeo.2016.11.024

Grugnaletti, M., Pantini, S., Verginelli, I., & Lombardi, F. (2016). An easy-to-use tool for the evaluation of leachate production at landfill sites. Waste Management, 55, 204-219. doi:10.1016/j.wasman.2016.03.030

Lei, L., Bing, L., Qiang, X., Ying, Z., & Chun, Y. (2011). The modelling of biochemical-thermal coupling effect on gas generation and transport in MSW landfill. International Journal of Environment and Pollution, 46(3/4), 216. doi:10.1504/ijep.2011.045480

Zacharof, A. I., & Butler, A. P. (2004). Stochastic modelling of landfill leachate and biogas production incorporating waste heterogeneity. Model formulation and uncertainty analysis. Waste Management, 24(5), 453-462. doi:10.1016/j.wasman.2003.09.010

Pommier, S., Chenu, D., Quintard, M., & Lefebvre, X. (2007). A logistic model for the prediction of the influence of water on the solid waste methanization in landfills. Biotechnology and Bioengineering, 97(3), 473-482. doi:10.1002/bit.21241

Abdallah, M., Fernandes, L., Warith, M., & Rendra, S. (2009). A fuzzy logic model for biogas generation in bioreactor landfillsA paper submitted to the Journal of Environmental Engineering and Science. Canadian Journal of Civil Engineering, 36(4), 701-708. doi:10.1139/l09-015

Rodrigo-Ilarri, J., Rodrigo-Clavero, M.-E., & Cassiraga, E. (2020). BIOLEACH: A New Decision Support Model for the Real-Time Management of Municipal Solid Waste Bioreactor Landfills. International Journal of Environmental Research and Public Health, 17(5), 1675. doi:10.3390/ijerph17051675

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record