- -

Inhibitory Effect of Azamacrocyclic Ligands on Polyphenol Oxidase in Model and Food Systems

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Inhibitory Effect of Azamacrocyclic Ligands on Polyphenol Oxidase in Model and Food Systems

Show full item record

Muñoz-Pina, S.; Ros-Lis, JV.; Delgado-Pinar, E.; Martínez-Camarena, Á.; Verdejo, B.; García-España, E.; Argüelles Foix, AL.... (2020). Inhibitory Effect of Azamacrocyclic Ligands on Polyphenol Oxidase in Model and Food Systems. Journal of Agricultural and Food Chemistry. 68(30):7964-7973. https://doi.org/10.1021/acs.jafc.0c02407

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161034

Files in this item

Item Metadata

Title: Inhibitory Effect of Azamacrocyclic Ligands on Polyphenol Oxidase in Model and Food Systems
Author: Muñoz-Pina, Sara Ros-Lis, José Vicente Delgado-Pinar, Estefanía Martínez-Camarena, Álvaro Verdejo, B. García-España, Enrique Argüelles Foix, Angel Luís Andrés Grau, Ana María
UPV Unit: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Issued date:
Abstract:
[EN] Enzymatic browning is one of the main problems faced by the food industry due to the enzyme polyphenol oxidase (PPO) provoking an undesirable color change in the presence of oxygen. Here, we report the evaluation of ...[+]
Subjects: PPO , Inhibition , Macrocyclic polyamines , Enzymatic activity
Copyrigths: Reserva de todos los derechos
Source:
Journal of Agricultural and Food Chemistry. (issn: 0021-8561 )
DOI: 10.1021/acs.jafc.0c02407
Publisher:
American Chemical Society
Publisher version: https://doi.org/10.1021/acs.jafc.0c02407
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C44/ES/DISEÑO Y APLICACIONES SELECCIONADAS DE NANOMATERIALES POROSOS MULTIFUNCIONALES CON POROSIDAD MEJORADA/
info:eu-repo/grantAgreement/MINECO//CTQ2016-78499-C6-1-R/ES/DISEÑO, SINTESIS Y NANOFORMULACION DE PEQUEÑAS MOLECULAS Y COMPLEJOS METALICOS CON ACTIVIDAD FRENTE A KINETOPLASTIDOS. BUSQUEDA DE DIANAS TERAPEUTICAS Y MECANISMOS DE ACCION/
info:eu-repo/grantAgreement/MINECO//MDM-2015-0038/
info:eu-repo/grantAgreement/AEI//CTQ2017-90852-REDC/ES/APLICACION DE LA QUIMICA SUPRAMOLECULAR AL DISEÑO, SINTESIS Y ESTUDIO DE COMPUESTOS BIOACTIVOS DE ACCION ANTIINFLAMATORIA, ANTITUMORAL O ANTIPARASITARIA/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2015%2F002/
Description: This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in Journal of Agricultural and Food Chemistry, copyright © American Chemical Society after peer review. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.jafc.0c02407
Thanks:
Financial support by the Spanish Ministerio de Ciencia, Innovacion y Universidades (project RTI2018-100910-B-C44), Ministerio de Economia y Competitividad (projects CTQ2016-78499-C6-1-R, Unidad de Excelencia MDM 2015-0038 ...[+]
Type: Artículo

References

Simpson, B. K. (Ed.). (2012). Food Biochemistry and Food Processing. doi:10.1002/9781118308035

İyidoǧan, N. F., & Bayındırlı, A. (2004). Effect of l-cysteine, kojic acid and 4-hexylresorcinol combination on inhibition of enzymatic browning in Amasya apple juice. Journal of Food Engineering, 62(3), 299-304. doi:10.1016/s0260-8774(03)00243-7

Croguennec, T. (2016). Enzymatic Browning. Handbook of Food Science and Technology 1, 159-181. doi:10.1002/9781119268659.ch6 [+]
Simpson, B. K. (Ed.). (2012). Food Biochemistry and Food Processing. doi:10.1002/9781118308035

İyidoǧan, N. F., & Bayındırlı, A. (2004). Effect of l-cysteine, kojic acid and 4-hexylresorcinol combination on inhibition of enzymatic browning in Amasya apple juice. Journal of Food Engineering, 62(3), 299-304. doi:10.1016/s0260-8774(03)00243-7

Croguennec, T. (2016). Enzymatic Browning. Handbook of Food Science and Technology 1, 159-181. doi:10.1002/9781119268659.ch6

Brütsch, L., Rugiero, S., Serrano, S. S., Städeli, C., Windhab, E. J., Fischer, P., & Kuster, S. (2018). Targeted Inhibition of Enzymatic Browning in Wheat Pastry Dough. Journal of Agricultural and Food Chemistry, 66(46), 12353-12360. doi:10.1021/acs.jafc.8b04477

Ma, L., Zhang, M., Bhandari, B., & Gao, Z. (2017). Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables. Trends in Food Science & Technology, 64, 23-38. doi:10.1016/j.tifs.2017.03.005

Queiroz, C., Mendes Lopes, M. L., Fialho, E., & Valente-Mesquita, V. L. (2008). Polyphenol Oxidase: Characteristics and Mechanisms of Browning Control. Food Reviews International, 24(4), 361-375. doi:10.1080/87559120802089332

Seo, S.-Y., Sharma, V. K., & Sharma, N. (2003). Mushroom Tyrosinase:  Recent Prospects. Journal of Agricultural and Food Chemistry, 51(10), 2837-2853. doi:10.1021/jf020826f

TRONC, J.-S., LAMARCHE, F., & MAKHLOUF, J. (1997). Enzymatic Browning Inhibition in Cloudy Apple Juice by Electrodialysis. Journal of Food Science, 62(1), 75-78. doi:10.1111/j.1365-2621.1997.tb04371.x

Jiang, S., & Penner, M. H. (2019). The nature of β-cyclodextrin inhibition of potato polyphenol oxidase-catalyzed reactions. Food Chemistry, 298, 125004. doi:10.1016/j.foodchem.2019.125004

Buckow, R., Kastell, A., Terefe, N. S., & Versteeg, C. (2010). Pressure and Temperature Effects on Degradation Kinetics and Storage Stability of Total Anthocyanins in Blueberry Juice. Journal of Agricultural and Food Chemistry, 58(18), 10076-10084. doi:10.1021/jf1015347

Massini, L., Rico, D., & Martin-Diana, A. B. (2018). Quality Attributes of Apple Juice. Fruit Juices, 45-57. doi:10.1016/b978-0-12-802230-6.00004-7

McEvily, A. J., Iyengar, R., & Otwell, W. S. (1992). Inhibition of enzymatic browning in foods and beverages. Critical Reviews in Food Science and Nutrition, 32(3), 253-273. doi:10.1080/10408399209527599

Iyengar, R., & McEvily, A. J. (1992). Anti-browning agents: alternatives to the use of sulfites in foods. Trends in Food Science & Technology, 3, 60-64. doi:10.1016/0924-2244(92)90131-f

Muñoz-Pina, S., Ros-Lis, J. V., Argüelles, Á., Coll, C., Martínez-Máñez, R., & Andrés, A. (2018). Full inhibition of enzymatic browning in the presence of thiol-functionalised silica nanomaterial. Food Chemistry, 241, 199-205. doi:10.1016/j.foodchem.2017.08.059

Muñoz-Pina, S., Ros-Lis, J. V., Argüelles, Á., Martínez-Máñez, R., & Andrés, A. (2020). Influence of the functionalisation of mesoporous silica material UVM-7 on polyphenol oxidase enzyme capture and enzymatic browning. Food Chemistry, 310, 125741. doi:10.1016/j.foodchem.2019.125741

Castillo, C. E., Máñez, M. A., Basallote, M. G., Clares, M. P., Blasco, S., & García-España, E. (2012). Copper(ii) complexes of quinoline polyazamacrocyclic scorpiand-type ligands: X-ray, equilibrium and kinetic studies. Dalton Transactions, 41(18), 5617. doi:10.1039/c2dt30223c

Santra, S., Mukherjee, S., Bej, S., Saha, S., & Ghosh, P. (2015). Amino-ether macrocycle that forms CuII templated threaded heteroleptic complexes: a detailed selectivity, structural and theoretical investigations. Dalton Transactions, 44(34), 15198-15211. doi:10.1039/c5dt00596e

Fan, R., Serrano-Plana, J., Oloo, W. N., Draksharapu, A., Delgado-Pinar, E., Company, A., … Münck, E. (2018). Spectroscopic and DFT Characterization of a Highly Reactive Nonheme FeV–Oxo Intermediate. Journal of the American Chemical Society, 140(11), 3916-3928. doi:10.1021/jacs.7b11400

Martínez-Camarena, Á., Liberato, A., Delgado-Pinar, E., Algarra, A. G., Pitarch-Jarque, J., Llinares, J. M., … García-España, E. (2018). Coordination Chemistry of Cu2+ Complexes of Small N-Alkylated Tetra-azacyclophanes with SOD Activity. Inorganic Chemistry, 57(17), 10961-10973. doi:10.1021/acs.inorgchem.8b01492

Algarra, A. G., Basallote, M. G., Belda, R., Blasco, S., Castillo, C. E., Llinares, J. M., … Verdejo, B. (2009). Synthesis, Protonation and CuIIComplexes of Two Novel Isomeric Pentaazacyclophane Ligands: Potentiometric, DFT, Kinetic and AMP Recognition Studies. European Journal of Inorganic Chemistry, 2009(1), 62-75. doi:10.1002/ejic.200800576

Díaz, P., Basallote, M. G., Máñez, M. A., García-España, E., Gil, L., Latorre, J., … Luis, S. V. (2003). Thermodynamic and kinetic studies on the Cu2+ coordination chemistry of a novel binucleating pyridinophane ligandElectronic supplementary information (ESI) available: Table S1: observed rate constants for the acid-promoted decomposition of Cu2+ complexes with ligand L. Table S2: observed rate constants for the acid-promoted decomposition of Cu2+ complexes with macrocycle L1. Fig. S1: Variation of some selected 13C chemical shifts as a function of pH. See http://www.rsc.org/suppdata/dt/b2/b209013a/. Dalton Transactions, (6), 1186-1193. doi:10.1039/b209013a

Basallote, M. G., Doménech, A., Ferrer, A., García-España, E., Llinares, J. M., Máñez, M. A., … Verdejo, B. (2006). Synthesis and Cu(II) coordination of two new hexaamines containing alternated propylenic and ethylenic chains: Kinetic studies on pH-driven metal ion slippage movements. Inorganica Chimica Acta, 359(7), 2004-2014. doi:10.1016/j.ica.2006.01.030

Acosta-Rueda, L., Delgado-Pinar, E., Pitarch-Jarque, J., Rodríguez, A., Blasco, S., González, J., … García-España, E. (2015). Correlation between the molecular structure and the kinetics of decomposition of azamacrocyclic copper(ii) complexes. Dalton Transactions, 44(17), 8255-8266. doi:10.1039/c5dt00408j

Alarcón, J., Albelda, M. T., Belda, R., Clares, M. P., Delgado-Pinar, E., Frías, J. C., … Soriano, C. (2008). Synthesis and coordination properties of an azamacrocyclic Zn(II) chemosensor containing pendent methylnaphthyl groups. Dalton Transactions, (46), 6530. doi:10.1039/b808993k

Clares, M. P., Aguilar, J., Aucejo, R., Lodeiro, C., Albelda, M. T., Pina, F., … García-España, E. (2004). Synthesis and H+, Cu2+, and Zn2+Coordination Behavior of a Bis(fluorophoric) Bibrachial Lariat Aza-Crown. Inorganic Chemistry, 43(19), 6114-6122. doi:10.1021/ic049694t

Siddiq, M., & Dolan, K. D. (2017). Characterization of polyphenol oxidase from blueberry (Vaccinium corymbosum L.). Food Chemistry, 218, 216-220. doi:10.1016/j.foodchem.2016.09.061

Munjal, N., & Sawhney, S. . (2002). Stability and properties of mushroom tyrosinase entrapped in alginate, polyacrylamide and gelatin gels. Enzyme and Microbial Technology, 30(5), 613-619. doi:10.1016/s0141-0229(02)00019-4

Vermeer, L. M., Higgins, C. A., Roman, D. L., & Doorn, J. A. (2013). Real-time monitoring of tyrosine hydroxylase activity using a plate reader assay. Analytical Biochemistry, 432(1), 11-15. doi:10.1016/j.ab.2012.09.005

Espín, J. C., Varón, R., Fenoll, L. G., Gilabert, M. A., García-Ruíz, P. A., Tudela, J., & García-Cánovas, F. (2000). Kinetic characterization of the substrate specificity and mechanism of mushroom tyrosinase. European Journal of Biochemistry, 267(5), 1270-1279. doi:10.1046/j.1432-1327.2000.01013.x

Marcantoni, E., & Petrini, M. (2016). Recent Developments in the Stereoselective Synthesis of Nitrogen-Containing Heterocycles usingN-Acylimines as Reactive Substrates. Advanced Synthesis & Catalysis, 358(23), 3657-3682. doi:10.1002/adsc.201600644

Liu, W., Zou, L., Liu, J., Zhang, Z., Liu, C., & Liang, R. (2013). The effect of citric acid on the activity, thermodynamics and conformation of mushroom polyphenoloxidase. Food Chemistry, 140(1-2), 289-295. doi:10.1016/j.foodchem.2013.02.028

Son, S. M., Moon, K. D., & Lee, C. Y. (2000). Kinetic Study of Oxalic Acid Inhibition on Enzymatic Browning. Journal of Agricultural and Food Chemistry, 48(6), 2071-2074. doi:10.1021/jf991397x

ÖZ, F., COLAK, A., ÖZEL, A., SAĞLAM ERTUNGA, N., & SESLI, E. (2011). PURIFICATION AND CHARACTERIZATION OF A MUSHROOM POLYPHENOL OXIDASE AND ITS ACTIVITY IN ORGANIC SOLVENTS. Journal of Food Biochemistry, 37(1), 36-44. doi:10.1111/j.1745-4514.2011.00604.x

Ayaz, F. A., Demir, O., Torun, H., Kolcuoglu, Y., & Colak, A. (2008). Characterization of polyphenoloxidase (PPO) and total phenolic contents in medlar (Mespilus germanica L.) fruit during ripening and over ripening. Food Chemistry, 106(1), 291-298. doi:10.1016/j.foodchem.2007.05.096

Qin, X.-Y., Lee, J., Zheng, L., Yang, J.-M., Gong, Y., & Park, Y.-D. (2018). Inhibition of α-glucosidase by 2-thiobarbituric acid: Molecular dynamics simulation integrating parabolic noncompetitive inhibition kinetics. Process Biochemistry, 65, 62-70. doi:10.1016/j.procbio.2017.10.016

Chakrabarty, S. P., Ramapanicker, R., Mishra, R., Chandrasekaran, S., & Balaram, H. (2009). Development and characterization of lysine based tripeptide analogues as inhibitors of Sir2 activity. Bioorganic & Medicinal Chemistry, 17(23), 8060-8072. doi:10.1016/j.bmc.2009.10.003

Gou, L., Lee, J., Yang, J.-M., Park, Y.-D., Zhou, H.-M., Zhan, Y., & Lü, Z.-R. (2017). Inhibition of tyrosinase by fumaric acid: Integration of inhibition kinetics with computational docking simulations. International Journal of Biological Macromolecules, 105, 1663-1669. doi:10.1016/j.ijbiomac.2016.12.013

Tang, H., Cui, F., Li, H., Huang, Q., & Li, Y. (2018). Understanding the inhibitory mechanism of tea polyphenols against tyrosinase using fluorescence spectroscopy, cyclic voltammetry, oximetry, and molecular simulations. RSC Advances, 8(15), 8310-8318. doi:10.1039/c7ra12749a

Dewey, T. G. (Ed.). (1991). Biophysical and Biochemical Aspects of Fluorescence Spectroscopy. doi:10.1007/978-1-4757-9513-4

Gou, L., Lee, J., Hao, H., Park, Y.-D., Zhan, Y., & Lü, Z.-R. (2017). The effect of oxaloacetic acid on tyrosinase activity and structure: Integration of inhibition kinetics with docking simulation. International Journal of Biological Macromolecules, 101, 59-66. doi:10.1016/j.ijbiomac.2017.03.073

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record