Mostrar el registro sencillo del ítem
dc.contributor.author | Martí-Bonmatí, Luis | es_ES |
dc.contributor.author | Alberich Bayarri, Ángel | es_ES |
dc.contributor.author | Ladenstein, Ruth | es_ES |
dc.contributor.author | Blanquer Espert, Ignacio | es_ES |
dc.contributor.author | Segrelles Quilis, José Damián | es_ES |
dc.contributor.author | Cerdá-Alberich, Leonor | es_ES |
dc.contributor.author | Gkontra, Polyxeni | es_ES |
dc.contributor.author | Hero, Barbara | es_ES |
dc.contributor.author | García-Aznar, J. M. | es_ES |
dc.contributor.author | Keim, Daniel | es_ES |
dc.contributor.author | Jentner, Wolfgang | es_ES |
dc.contributor.author | Seymour, Karine | es_ES |
dc.contributor.author | Jiménez-Pastor, Ana | es_ES |
dc.contributor.author | González-Valverde, Ismael | es_ES |
dc.contributor.author | Martínez de las Heras, Blanca | es_ES |
dc.contributor.author | Essiaf, Samira | es_ES |
dc.date.accessioned | 2021-02-11T04:31:56Z | |
dc.date.available | 2021-02-11T04:31:56Z | |
dc.date.issued | 2020-04 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161038 | |
dc.description.abstract | [EN] PRIMAGE is one of the largest and more ambitious research projects dealing with medical imaging, artificial intelligence and cancer treatment in children. It is a 4-year European Commission-financed project that has 16 European partners in the consortium, including the European Society for Paediatric Oncology, two imaging biobanks, and three prominent European paediatric oncology units. The project is constructed as an observational in silico study involving high-quality anonymised datasets (imaging, clinical, molecular, and genetics) for the training and validation of machine learning and multiscale algorithms. The open cloud-based platform will offer precise clinical assistance for phenotyping (diagnosis), treatment allocation (prediction), and patient endpoints (prognosis), based on the use of imaging biomarkers, tumour growth simulation, advanced visualisation of confidence scores, and machine-learning approaches. The decision support prototype will be constructed and validated on two paediatric cancers: neuroblastoma and diffuse intrinsic pontine glioma. External validation will be performed on data recruited from independent collaborative centres. Final results will be available for the scientific community at the end of the project, and ready for translation to other malignant solid tumours. | es_ES |
dc.description.sponsorship | Horizon 2020 project (RIA, topic SC1-DTH-07-2018) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | European Radiology Experimental | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Artificial intelligence | es_ES |
dc.subject | Biomarkers (tumour) | es_ES |
dc.subject | Cloud computing | es_ES |
dc.subject | Diffuse intrinsic pontine glioma | es_ES |
dc.subject | Neuroblastoma | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.title | PRIMAGE project: predictive in silico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/s41747-020-00150-9 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/826494/EU/PRedictive In-silico Multiscale Analytics to support cancer personalized diaGnosis and prognosis, Empowered by imaging biomarkers/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Martí-Bonmatí, L.; Alberich Bayarri, Á.; Ladenstein, R.; Blanquer Espert, I.; Segrelles Quilis, JD.; Cerdá-Alberich, L.; Gkontra, P.... (2020). PRIMAGE project: predictive in silico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers. European Radiology Experimental. 4(22):1-11. https://doi.org/10.1186/s41747-020-00150-9 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1186/s41747-020-00150-9 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 4 | es_ES |
dc.description.issue | 22 | es_ES |
dc.identifier.eissn | 2509-9280 | es_ES |
dc.relation.pasarela | S\407131 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.description.references | Porter ME, Teisberg EO (2006) Redefining health care : creating value-based competition on results. Harvard Business School Press, Boston | es_ES |
dc.description.references | Hernán MA, Robins JM (2016) Using big data to emulate a target trial when a randomized trial is not available. Am J Epidemiol 183:758–764. https://doi.org/10.1093/aje/kwv254 | es_ES |
dc.description.references | Wang SV, Schneeweiss S, Berger ML et al (2017) Reporting to improve reproducibility and facilitate validity assessment for healthcare database studies V1.0. Pharmacoepidemiol Drug Saf 26:1018–1032. https://doi.org/10.1002/pds.4295 | es_ES |
dc.description.references | Viceconti M, Henney A, Morley-Fletcher E (2016) In silico clinical trials: how computer simulation will transform the biomedical industry. Int J Clin Trials 3:37. https://doi.org/10.18203/2349-3259.ijct20161408 | es_ES |
dc.description.references | Martí-Bonmatí L, Alberich-Bayarri A (eds) (2018) Imaging biomarkers : development and clinical integration. Springer, Heidelberg | es_ES |
dc.description.references | Kazem MA (2017) Predictive models in cancer management: a guide for clinicians. Surgeon 15:93–97. https://doi.org/10.1016/j.surge.2016.06.002 | es_ES |
dc.description.references | Martí-Bonmatí L, Ruiz-Martínez E, Ten A, Alberich-Bayarri A (2018) How to integrate quantitative information into imaging reports for oncologic patients. Radiologia 60:43–52. https://doi.org/10.1016/j.rx.2018.02.005 | es_ES |
dc.description.references | Bernsen MR, Kooiman K, Segbers M, Van Leeuween FWB, Jong M (2015) Biomarkers in preclinical cancer imaging. Eur J Nucl Med Mol Imaging 42:579–596. https://doi.org/10.1007/s00259-014-2980-7 | es_ES |
dc.description.references | Alberich-Bayarri A, Neri E, Martí-Bonmatí L (2019) Imaging biomarkers and imaging biobanks. In: Ranschaert E, Morozov S, Algra P (eds) Artificial intelligence in medical imaging. Springer, Heidelberg, pp 119–126 | es_ES |
dc.description.references | O’Connor JPB, Aboagye EO, Adams JE et al (2017) Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol 14:169–186. https://doi.org/10.1038/nrclinonc.2016.162 | es_ES |
dc.description.references | Escribano J, Chen MB, Moeendarbary E et al (2019) Balance of mechanical forces drives endothelial gap formation and may facilitate cancer and immune-cell extravasation. PLoS Comput Biol 15:e1006395. https://doi.org/10.1371/journal.pcbi.1006395 | es_ES |
dc.description.references | Enderling H, Chaplain MAJ (2014) Mathematical modeling of tumor growth and treatment. Curr Pharm Des 20:4934–4940. https://doi.org/10.1111/2041-210X.12500 | es_ES |
dc.description.references | Bhatnagar SN (2012) An audit of malignant solid tumors in infants and neonates. J Neonatal Surg 1:5 PMID: 26023364; PMCID: PMC4420305 | es_ES |
dc.description.references | London WB, Castleberry RP, Matthay KK et al (2005) Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children’s Oncology Group. J Clin Oncol 23:6459–6465. https://doi.org/10.1200/JCO.2005.05.571 | es_ES |
dc.description.references | Cohn SL, Pearson ADJ, London WB et al (2009) The international neuroblastoma risk group (INRG) classification system: an INRG task force report. J Clin Oncol 27:289–297. https://doi.org/10.1200/JCO.2008.16.6785 | es_ES |
dc.description.references | Morgenstern DA, Pötschger U, Moreno L et al (2018) Risk stratification of high-risk metastatic neuroblastoma: a report from the HR-NBL-1/SIOPEN study. Pediatr Blood Cancer 65:e27363. https://doi.org/10.1002/pbc.27363 | es_ES |
dc.description.references | Rubie H, De Bernardi B, Gerrard M et al (2011) Excellent outcome with reduced treatment in infants with nonmetastatic and unresectable neuroblastoma without MYCN amplification: results of the prospective INES 99.1. J Clin Oncol 29:449–455. https://doi.org/10.1200/JCO.2010.29.5196 | es_ES |
dc.description.references | De Bernardi B, Gerrard M, Boni L et al (2009) Excellent outcome with reduced treatment for infants with disseminated neuroblastoma without MYCN gene amplification. J Clin Oncol 27:1034–1040. https://doi.org/10.1200/JCO.2008.17.5877 | es_ES |
dc.description.references | Kohler JA, Rubie H, Castel V et al (2013) Treatment of children over the age of one year with unresectable localised neuroblastoma without MYCN amplification: results of the SIOPEN study. Eur J Cancer 49:3671–3679. https://doi.org/10.1016/j.ejca.2013.07.002 | es_ES |
dc.description.references | Canete A, Gerrard M, Rubie H et al (2009) Poor survival for infants with MYCN-amplified metastatic neuroblastoma despite intensified treatment: the International Society of Paediatric Oncology European Neuroblastoma Experience. J Clin Oncol 27:1014–1019. https://doi.org/10.1200/JCO.2007.14.5839 | es_ES |
dc.description.references | Avanzini S, Pio L, Erminio G et al (2017) Image-defined risk factors in unresectable neuroblastoma: SIOPEN study on incidence, chemotherapy-induced variation, and impact on surgical outcomes. Pediatr Blood Cancer 64. https://doi.org/10.1002/pbc.26605 | es_ES |
dc.description.references | Monclair T, Mosseri V, Cecchetto G, De Bernardi B, Michon J, Holmes K (2015) Influence of image-defined risk factors on the outcome of patients with localised neuroblastoma. A report from the LNESG1 study of the European International Society of Paediatric Oncology Neuroblastoma Group. Pediatr Blood Cancer 62:1536–1542. https://doi.org/10.1002/pbc.25460 | es_ES |
dc.description.references | Ladenstein R, Pötschger U, Pearson ADJ et al (2017) Busulfan and melphalan versus carboplatin, etoposide, and melphalan as high-dose chemotherapy for high-risk neuroblastoma (HR-NBL1/SIOPEN): an international, randomised, multi-arm, open-label, phase 3 trial. Lancet Oncol 18:500–514. https://doi.org/10.1016/S1470-2045(17)30070-0 | es_ES |
dc.description.references | Ladenstein R, Pötschger U, Valteau-Couanet D et al (2018) Interleukin 2 with anti-GD2 antibody ch14.18/CHO (dinutuximab beta) in patients with high-risk neuroblastoma (HR-NBL1/SIOPEN): a multicentre, randomised, phase 3 trial. Lancet Oncol 19:1617–1629. https://doi.org/10.1016/S1470-2045(18)30578-3 | es_ES |
dc.description.references | Johung TB, Monje M (2017) Diffuse intrinsic pontine glioma: new pathophysiological insights and emerging therapeutic targets. Curr Neuropharmacol 15:88–97. https://doi.org/10.2174/1570159x14666160509123229 | es_ES |
dc.description.references | Sacha D, Stoffel A, Stoffel F, Kwon BC, Ellis G, Keim DA (2014) Knowledge generation model for visual analytics. IEEE Trans Vis Comput Graph 20:1604–1603. https://doi.org/10.1109/TVCG.2014.2346481 | es_ES |
dc.description.references | Rimrock. Robust Remote Process Controller. https://submit.plgrid.pl/. Accessed 28 Sept 2019 | es_ES |
dc.description.references | PL-Grid Data service. https://data.plgrid.pl/?locale=en. Accessed 28 Sept 2019 | es_ES |
dc.description.references | ATMOSPHERE Project. Adaptive, trustworthy, manageable, orchestrated, secure, privacy-assuring, hybrid ecosystem for resilient cloud computing. ATMOSPHERE Project. https://cordis.europa.eu/project/rcn/211963/factsheet/en. Accessed 8 Sept 2019 | es_ES |
dc.description.references | Model Execution Environment. https://mee.cyfronet.pl/. Accessed 30 Sept 2019 | es_ES |
dc.description.references | Kasztelnik M, Coto E, Bubak M et al (2017) Support for Taverna workflows in the VPH-Share cloud platform. Comput Methods Programs Biomed 146:37–46. https://doi.org/10.1016/j.cmpb.2017.05.006 | es_ES |
dc.description.references | Nowakowski P, Bubak M, Bartyński T et al (2018) Cloud computing infrastructure for the VPH community. J Comput Sci 24:169–179. https://doi.org/10.1016/j.jocs.2017.06.012 | es_ES |
dc.description.references | Bubak M, Gubała T, Hose DR et al (2019) Processing complex medical workflows in the EurValve environment. Proceedings of the CompBioMed Conference, 25-27 September, 2019, London, UK. https://www.compbiomed-conference.org/wp-content/uploads/2019/07/CBMC19_paper_62.pdf | es_ES |
dc.description.references | Martí Bonmatí L, Alberich-Bayarri A, García-Martí G et al (2012) Imaging biomarkers, quantitative imaging, and bioengineering. Radiologia 54:269–278. https://doi.org/10.1016/j.rx.2010.12.013 | es_ES |
dc.description.references | Ingham-Dempster T, Walker DC, Corfe BM (2017) An agent-based model of anoikis in the colon crypt displays novel emergent behaviour consistent with biological observations. R Soc Open Sci 4:160858. https://doi.org/10.1098/rsos.160858 | es_ES |
dc.description.references | Richmond P, Walker D, Coakley S, Romano D (2010) High performance cellular level agent-based simulation with FLAME for the GPU. Brief Bioinform 11:334–347. https://doi.org/10.1093/bib/bbp073 | es_ES |
dc.description.references | An EC Research and Innovation Action. http://www.eurvalve.eu/. Accessed 28 Sept 2019 | es_ES |
dc.description.references | Weir P, Ellerweg R, Payne S et al (2018) Go-smart: open-ended, web-based modelling of minimally invasive cancer treatments via a clinical domain approach. arXiv:1803.09166. https://doi.org/10.13140/RG.2.2.30828.46726 | es_ES |
dc.description.references | GoSmart - Generic open-end simulation environment for minimaly invasive cancer treatment. https://gosmart-project.eu/. Accessed 28 Sept 2019 | es_ES |
dc.description.references | Simon T, Hero B, Schulte JH et al (2017) 2017 GPOH guidelines for diagnosis and treatment of patients with neuroblastic tumors. Klin Padiatr 229:147–167. https://doi.org/10.1055/s-0043-103086 | es_ES |