- -

Particle swarm grammatical evolution for energy demand estimation

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Particle swarm grammatical evolution for energy demand estimation

Show simple item record

Files in this item

dc.contributor.author Martínez-Rodríguez, David es_ES
dc.contributor.author Colmenar, J. Manuel es_ES
dc.contributor.author Hidalgo, J. Ignacio es_ES
dc.contributor.author Villanueva Micó, Rafael Jacinto es_ES
dc.contributor.author Salcedo-Sanz, Sancho es_ES
dc.date.accessioned 2021-02-11T04:32:10Z
dc.date.available 2021-02-11T04:32:10Z
dc.date.issued 2020-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161045
dc.description.abstract [EN] Grammatical Swarm is a search and optimization algorithm that belongs to the more general Grammatical Evolution family, which works with a set of solutions called individuals or particles. It uses the Particle Swarm Optimization algorithm as the search engine in the evolution of solutions. In this paper, we present a Grammatical Swarm algorithm for total energy demand estimation in a country from macroeconomic variables. Each particle in the Grammatical Swarm encodes a different model for energy demand estimation, which will be decoded by a predefined grammar. The parameters of the model are also optimized by the proposed algorithm, in such a way that the model is adjusted to a training set of real energy demand data, selecting the more appropriate variables to appear in the model. We analyze the performance of the Grammatical Swarm evolution in two real problems of one-year ahead energy demand estimation in Spain and France. The proposal is compared with previous approaches with competitive results. es_ES
dc.description.sponsorship Spanish Ministerial Commission of Science and Technology (MICYT), Grant/Award Number: TIN2017-85887-C2-2-P; Ministerio de Ciencia, Innovacion y Universidades, Grant/Award Number: PGC2018-095322-B-C22 and RTI2018-095180-B-I00; Comunidad de Madrid y Fondos Estructurales de la Union Europea, Grant/Award Number: S2018/TCS-4566 and Y2018/NMT-4668; GenObIA-CM, Grant/Award Number: S2017/BMD-3773; Ministerio de Economia, Industria y Competitividad, Grant/Award Number: MTM2017-89664-P es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons Ltd es_ES
dc.relation.ispartof Energy Science & Engineering es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Energy prediction models es_ES
dc.subject Grammatical swarm evolution es_ES
dc.subject Macroeconomic variables es_ES
dc.subject Total energy demand es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Particle swarm grammatical evolution for energy demand estimation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/ese3.568 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095180-B-I00/ES/SISTEMA ADAPTATIVO BIOINSPIRADO PARA EL CONTROL GLUCEMICO BASADO EN SENSORES Y ACCESORIOS INTELIGENTES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAM//Y2018%2FNMT- 4668/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAM//S2017%2FBMD-3773/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-85887-C2-2-P/ES/NUEVOS ALGORITMOS HIBRIDOS DE INSPIRACION NATURAL PARA PROBLEMAS DE CLASIFICACION ORDINAL Y PREDICCION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095322-B-C22/ES/METAHEURISTICAS EFICIENTES PARA LA OPTIMIZACION EN GRAFOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAM//S2018%2FTCS-4566/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.description.bibliographicCitation Martínez-Rodríguez, D.; Colmenar, JM.; Hidalgo, JI.; Villanueva Micó, RJ.; Salcedo-Sanz, S. (2020). Particle swarm grammatical evolution for energy demand estimation. Energy Science & Engineering. 8(4):1068-1079. https://doi.org/10.1002/ese3.568 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/ese3.568 es_ES
dc.description.upvformatpinicio 1068 es_ES
dc.description.upvformatpfin 1079 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2050-0505 es_ES
dc.relation.pasarela S\402083 es_ES
dc.contributor.funder Comunidad de Madrid es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Safarzyńska, K., & van den Bergh, J. C. J. M. (2017). Integrated crisis-energy policy: Macro-evolutionary modelling of technology, finance and energy interactions. Technological Forecasting and Social Change, 114, 119-137. doi:10.1016/j.techfore.2016.07.033 es_ES
dc.description.references Li, F., Song, Z., & Liu, W. (2014). China’s energy consumption under the global economic crisis: Decomposition and sectoral analysis. Energy Policy, 64, 193-202. doi:10.1016/j.enpol.2013.09.014 es_ES
dc.description.references Salcedo-Sanz, S., Muñoz-Bulnes, J., Portilla-Figueras, J. A., & Del Ser, J. (2015). One-year-ahead energy demand estimation from macroeconomic variables using computational intelligence algorithms. Energy Conversion and Management, 99, 62-71. doi:10.1016/j.enconman.2015.03.109 es_ES
dc.description.references Sánchez-Oro, J., Duarte, A., & Salcedo-Sanz, S. (2016). Robust total energy demand estimation with a hybrid Variable Neighborhood Search – Extreme Learning Machine algorithm. Energy Conversion and Management, 123, 445-452. doi:10.1016/j.enconman.2016.06.050 es_ES
dc.description.references Ceylan, H., & Ozturk, H. K. (2004). Estimating energy demand of Turkey based on economic indicators using genetic algorithm approach. Energy Conversion and Management, 45(15-16), 2525-2537. doi:10.1016/j.enconman.2003.11.010 es_ES
dc.description.references Shaik, S., & Yeboah, O.-A. (2018). Does climate influence energy demand? A regional analysis. Applied Energy, 212, 691-703. doi:10.1016/j.apenergy.2017.11.109 es_ES
dc.description.references United Nations Climate Change Conference.The Paris Agreement. UNTC XXVII 7.d. es_ES
dc.description.references Suganthi, L., & Samuel, A. A. (2012). Energy models for demand forecasting—A review. Renewable and Sustainable Energy Reviews, 16(2), 1223-1240. doi:10.1016/j.rser.2011.08.014 es_ES
dc.description.references Geem, Z. W., & Roper, W. E. (2009). Energy demand estimation of South Korea using artificial neural network. Energy Policy, 37(10), 4049-4054. doi:10.1016/j.enpol.2009.04.049 es_ES
dc.description.references Ünler, A. (2008). Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025. Energy Policy, 36(6), 1937-1944. doi:10.1016/j.enpol.2008.02.018 es_ES
dc.description.references Kıran, M. S., Özceylan, E., Gündüz, M., & Paksoy, T. (2012). Swarm intelligence approaches to estimate electricity energy demand in Turkey. Knowledge-Based Systems, 36, 93-103. doi:10.1016/j.knosys.2012.06.009 es_ES
dc.description.references Kıran, M. S., Özceylan, E., Gündüz, M., & Paksoy, T. (2012). A novel hybrid approach based on Particle Swarm Optimization and Ant Colony Algorithm to forecast energy demand of Turkey. Energy Conversion and Management, 53(1), 75-83. doi:10.1016/j.enconman.2011.08.004 es_ES
dc.description.references Yu, S., Wei, Y.-M., & Wang, K. (2012). A PSO–GA optimal model to estimate primary energy demand of China. Energy Policy, 42, 329-340. doi:10.1016/j.enpol.2011.11.090 es_ES
dc.description.references Yu, S., Zhu, K., & Zhang, X. (2012). Energy demand projection of China using a path-coefficient analysis and PSO–GA approach. Energy Conversion and Management, 53(1), 142-153. doi:10.1016/j.enconman.2011.08.015 es_ES
dc.description.references Yu, S., & Zhu, K. (2012). A hybrid procedure for energy demand forecasting in China. Energy, 37(1), 396-404. doi:10.1016/j.energy.2011.11.015 es_ES
dc.description.references Geng, Z., Zeng, R., Han, Y., Zhong, Y., & Fu, H. (2019). Energy efficiency evaluation and energy saving based on DEA integrated affinity propagation clustering: Case study of complex petrochemical industries. Energy, 179, 863-875. doi:10.1016/j.energy.2019.05.042 es_ES
dc.description.references Han, Y., Long, C., Geng, Z., Zhu, Q., & Zhong, Y. (2019). A novel DEACM integrating affinity propagation for performance evaluation and energy optimization modeling: Application to complex petrochemical industries. Energy Conversion and Management, 183, 349-359. doi:10.1016/j.enconman.2018.12.120 es_ES
dc.description.references Han, Y., Wu, H., Jia, M., Geng, Z., & Zhong, Y. (2019). Production capacity analysis and energy optimization of complex petrochemical industries using novel extreme learning machine integrating affinity propagation. Energy Conversion and Management, 180, 240-249. doi:10.1016/j.enconman.2018.11.001 es_ES
dc.description.references Colmenar, J. M., Hidalgo, J. I., & Salcedo-Sanz, S. (2018). Automatic generation of models for energy demand estimation using Grammatical Evolution. Energy, 164, 183-193. doi:10.1016/j.energy.2018.08.199 es_ES
dc.description.references O’Neill, M., & Brabazon, A. (2006). Grammatical Swarm: The generation of programs by social programming. Natural Computing, 5(4), 443-462. doi:10.1007/s11047-006-9007-7 es_ES
dc.description.references O’Neill, M., & Ryan, C. (2001). Grammatical evolution. IEEE Transactions on Evolutionary Computation, 5(4), 349-358. doi:10.1109/4235.942529 es_ES
dc.description.references KennedyJ EberhartR.Particle swarm optimization. Vol.4. Proceedings of ICNN'95 - International Conference on Neural Networks.Perth WA;1995:1942‐1948.https://doi.org/10.1109/ICNN.1995.488968 es_ES
dc.description.references Tsoulos, I. G., Gavrilis, D., & Glavas, E. (s. f.). Neural network construction using grammatical evolution. Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, 2005. doi:10.1109/isspit.2005.1577206 es_ES
dc.description.references Beni, G., & Wang, J. (1993). Swarm Intelligence in Cellular Robotic Systems. Robots and Biological Systems: Towards a New Bionics?, 703-712. doi:10.1007/978-3-642-58069-7_38 es_ES
dc.description.references Krause, J., Ruxton, G. D., & Krause, S. (2010). Swarm intelligence in animals and humans. Trends in Ecology & Evolution, 25(1), 28-34. doi:10.1016/j.tree.2009.06.016 es_ES
dc.description.references Marini, F., & Walczak, B. (2015). Particle swarm optimization (PSO). A tutorial. Chemometrics and Intelligent Laboratory Systems, 149, 153-165. doi:10.1016/j.chemolab.2015.08.020 es_ES
dc.description.references Ling, C. X. (1995). Overfitting and generalization in learning discrete patterns. Neurocomputing, 8(3), 341-347. doi:10.1016/0925-2312(95)00050-g es_ES


This item appears in the following Collection(s)

Show simple item record