dc.contributor.author |
Martínez-Rodríguez, David
|
es_ES |
dc.contributor.author |
Colmenar, J. Manuel
|
es_ES |
dc.contributor.author |
Hidalgo, J. Ignacio
|
es_ES |
dc.contributor.author |
Villanueva Micó, Rafael Jacinto
|
es_ES |
dc.contributor.author |
Salcedo-Sanz, Sancho
|
es_ES |
dc.date.accessioned |
2021-02-11T04:32:10Z |
|
dc.date.available |
2021-02-11T04:32:10Z |
|
dc.date.issued |
2020-04 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/161045 |
|
dc.description.abstract |
[EN] Grammatical Swarm is a search and optimization algorithm that belongs to the more general Grammatical Evolution family, which works with a set of solutions called individuals or particles. It uses the Particle Swarm Optimization algorithm as the search engine in the evolution of solutions. In this paper, we present a Grammatical Swarm algorithm for total energy demand estimation in a country from macroeconomic variables. Each particle in the Grammatical Swarm encodes a different model for energy demand estimation, which will be decoded by a predefined grammar. The parameters of the model are also optimized by the proposed algorithm, in such a way that the model is adjusted to a training set of real energy demand data, selecting the more appropriate variables to appear in the model. We analyze the performance of the Grammatical Swarm evolution in two real problems of one-year ahead energy demand estimation in Spain and France. The proposal is compared with previous approaches with competitive results. |
es_ES |
dc.description.sponsorship |
Spanish Ministerial Commission of Science and Technology (MICYT), Grant/Award Number: TIN2017-85887-C2-2-P; Ministerio de Ciencia, Innovacion y Universidades, Grant/Award Number: PGC2018-095322-B-C22 and RTI2018-095180-B-I00; Comunidad de Madrid y Fondos Estructurales de la Union Europea, Grant/Award Number: S2018/TCS-4566 and Y2018/NMT-4668; GenObIA-CM, Grant/Award Number: S2017/BMD-3773; Ministerio de Economia, Industria y Competitividad, Grant/Award Number: MTM2017-89664-P |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
John Wiley & Sons Ltd |
es_ES |
dc.relation.ispartof |
Energy Science & Engineering |
es_ES |
dc.rights |
Reconocimiento (by) |
es_ES |
dc.subject |
Energy prediction models |
es_ES |
dc.subject |
Grammatical swarm evolution |
es_ES |
dc.subject |
Macroeconomic variables |
es_ES |
dc.subject |
Total energy demand |
es_ES |
dc.subject.classification |
MATEMATICA APLICADA |
es_ES |
dc.title |
Particle swarm grammatical evolution for energy demand estimation |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1002/ese3.568 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095180-B-I00/ES/SISTEMA ADAPTATIVO BIOINSPIRADO PARA EL CONTROL GLUCEMICO BASADO EN SENSORES Y ACCESORIOS INTELIGENTES/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/CAM//Y2018%2FNMT- 4668/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/CAM//S2017%2FBMD-3773/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-85887-C2-2-P/ES/NUEVOS ALGORITMOS HIBRIDOS DE INSPIRACION NATURAL PARA PROBLEMAS DE CLASIFICACION ORDINAL Y PREDICCION/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095322-B-C22/ES/METAHEURISTICAS EFICIENTES PARA LA OPTIMIZACION EN GRAFOS/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/CAM//S2018%2FTCS-4566/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària |
es_ES |
dc.description.bibliographicCitation |
Martínez-Rodríguez, D.; Colmenar, JM.; Hidalgo, JI.; Villanueva Micó, RJ.; Salcedo-Sanz, S. (2020). Particle swarm grammatical evolution for energy demand estimation. Energy Science & Engineering. 8(4):1068-1079. https://doi.org/10.1002/ese3.568 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1002/ese3.568 |
es_ES |
dc.description.upvformatpinicio |
1068 |
es_ES |
dc.description.upvformatpfin |
1079 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
8 |
es_ES |
dc.description.issue |
4 |
es_ES |
dc.identifier.eissn |
2050-0505 |
es_ES |
dc.relation.pasarela |
S\402083 |
es_ES |
dc.contributor.funder |
Comunidad de Madrid |
es_ES |
dc.contributor.funder |
European Commission |
es_ES |
dc.contributor.funder |
Agencia Estatal de Investigación |
es_ES |
dc.description.references |
Safarzyńska, K., & van den Bergh, J. C. J. M. (2017). Integrated crisis-energy policy: Macro-evolutionary modelling of technology, finance and energy interactions. Technological Forecasting and Social Change, 114, 119-137. doi:10.1016/j.techfore.2016.07.033 |
es_ES |
dc.description.references |
Li, F., Song, Z., & Liu, W. (2014). China’s energy consumption under the global economic crisis: Decomposition and sectoral analysis. Energy Policy, 64, 193-202. doi:10.1016/j.enpol.2013.09.014 |
es_ES |
dc.description.references |
Salcedo-Sanz, S., Muñoz-Bulnes, J., Portilla-Figueras, J. A., & Del Ser, J. (2015). One-year-ahead energy demand estimation from macroeconomic variables using computational intelligence algorithms. Energy Conversion and Management, 99, 62-71. doi:10.1016/j.enconman.2015.03.109 |
es_ES |
dc.description.references |
Sánchez-Oro, J., Duarte, A., & Salcedo-Sanz, S. (2016). Robust total energy demand estimation with a hybrid Variable Neighborhood Search – Extreme Learning Machine algorithm. Energy Conversion and Management, 123, 445-452. doi:10.1016/j.enconman.2016.06.050 |
es_ES |
dc.description.references |
Ceylan, H., & Ozturk, H. K. (2004). Estimating energy demand of Turkey based on economic indicators using genetic algorithm approach. Energy Conversion and Management, 45(15-16), 2525-2537. doi:10.1016/j.enconman.2003.11.010 |
es_ES |
dc.description.references |
Shaik, S., & Yeboah, O.-A. (2018). Does climate influence energy demand? A regional analysis. Applied Energy, 212, 691-703. doi:10.1016/j.apenergy.2017.11.109 |
es_ES |
dc.description.references |
United Nations Climate Change Conference.The Paris Agreement. UNTC XXVII 7.d. |
es_ES |
dc.description.references |
Suganthi, L., & Samuel, A. A. (2012). Energy models for demand forecasting—A review. Renewable and Sustainable Energy Reviews, 16(2), 1223-1240. doi:10.1016/j.rser.2011.08.014 |
es_ES |
dc.description.references |
Geem, Z. W., & Roper, W. E. (2009). Energy demand estimation of South Korea using artificial neural network. Energy Policy, 37(10), 4049-4054. doi:10.1016/j.enpol.2009.04.049 |
es_ES |
dc.description.references |
Ünler, A. (2008). Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025. Energy Policy, 36(6), 1937-1944. doi:10.1016/j.enpol.2008.02.018 |
es_ES |
dc.description.references |
Kıran, M. S., Özceylan, E., Gündüz, M., & Paksoy, T. (2012). Swarm intelligence approaches to estimate electricity energy demand in Turkey. Knowledge-Based Systems, 36, 93-103. doi:10.1016/j.knosys.2012.06.009 |
es_ES |
dc.description.references |
Kıran, M. S., Özceylan, E., Gündüz, M., & Paksoy, T. (2012). A novel hybrid approach based on Particle Swarm Optimization and Ant Colony Algorithm to forecast energy demand of Turkey. Energy Conversion and Management, 53(1), 75-83. doi:10.1016/j.enconman.2011.08.004 |
es_ES |
dc.description.references |
Yu, S., Wei, Y.-M., & Wang, K. (2012). A PSO–GA optimal model to estimate primary energy demand of China. Energy Policy, 42, 329-340. doi:10.1016/j.enpol.2011.11.090 |
es_ES |
dc.description.references |
Yu, S., Zhu, K., & Zhang, X. (2012). Energy demand projection of China using a path-coefficient analysis and PSO–GA approach. Energy Conversion and Management, 53(1), 142-153. doi:10.1016/j.enconman.2011.08.015 |
es_ES |
dc.description.references |
Yu, S., & Zhu, K. (2012). A hybrid procedure for energy demand forecasting in China. Energy, 37(1), 396-404. doi:10.1016/j.energy.2011.11.015 |
es_ES |
dc.description.references |
Geng, Z., Zeng, R., Han, Y., Zhong, Y., & Fu, H. (2019). Energy efficiency evaluation and energy saving based on DEA integrated affinity propagation clustering: Case study of complex petrochemical industries. Energy, 179, 863-875. doi:10.1016/j.energy.2019.05.042 |
es_ES |
dc.description.references |
Han, Y., Long, C., Geng, Z., Zhu, Q., & Zhong, Y. (2019). A novel DEACM integrating affinity propagation for performance evaluation and energy optimization modeling: Application to complex petrochemical industries. Energy Conversion and Management, 183, 349-359. doi:10.1016/j.enconman.2018.12.120 |
es_ES |
dc.description.references |
Han, Y., Wu, H., Jia, M., Geng, Z., & Zhong, Y. (2019). Production capacity analysis and energy optimization of complex petrochemical industries using novel extreme learning machine integrating affinity propagation. Energy Conversion and Management, 180, 240-249. doi:10.1016/j.enconman.2018.11.001 |
es_ES |
dc.description.references |
Colmenar, J. M., Hidalgo, J. I., & Salcedo-Sanz, S. (2018). Automatic generation of models for energy demand estimation using Grammatical Evolution. Energy, 164, 183-193. doi:10.1016/j.energy.2018.08.199 |
es_ES |
dc.description.references |
O’Neill, M., & Brabazon, A. (2006). Grammatical Swarm: The generation of programs by social programming. Natural Computing, 5(4), 443-462. doi:10.1007/s11047-006-9007-7 |
es_ES |
dc.description.references |
O’Neill, M., & Ryan, C. (2001). Grammatical evolution. IEEE Transactions on Evolutionary Computation, 5(4), 349-358. doi:10.1109/4235.942529 |
es_ES |
dc.description.references |
KennedyJ EberhartR.Particle swarm optimization. Vol.4. Proceedings of ICNN'95 - International Conference on Neural Networks.Perth WA;1995:1942‐1948.https://doi.org/10.1109/ICNN.1995.488968 |
es_ES |
dc.description.references |
Tsoulos, I. G., Gavrilis, D., & Glavas, E. (s. f.). Neural network construction using grammatical evolution. Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, 2005. doi:10.1109/isspit.2005.1577206 |
es_ES |
dc.description.references |
Beni, G., & Wang, J. (1993). Swarm Intelligence in Cellular Robotic Systems. Robots and Biological Systems: Towards a New Bionics?, 703-712. doi:10.1007/978-3-642-58069-7_38 |
es_ES |
dc.description.references |
Krause, J., Ruxton, G. D., & Krause, S. (2010). Swarm intelligence in animals and humans. Trends in Ecology & Evolution, 25(1), 28-34. doi:10.1016/j.tree.2009.06.016 |
es_ES |
dc.description.references |
Marini, F., & Walczak, B. (2015). Particle swarm optimization (PSO). A tutorial. Chemometrics and Intelligent Laboratory Systems, 149, 153-165. doi:10.1016/j.chemolab.2015.08.020 |
es_ES |
dc.description.references |
Ling, C. X. (1995). Overfitting and generalization in learning discrete patterns. Neurocomputing, 8(3), 341-347. doi:10.1016/0925-2312(95)00050-g |
es_ES |