- -

Modeling breast tumor growth by a randomized logistic model: A computational approach to treat uncertainties via probability densities

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modeling breast tumor growth by a randomized logistic model: A computational approach to treat uncertainties via probability densities

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Burgos-Simón, Clara es_ES
dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author Martínez-Rodríguez, David es_ES
dc.contributor.author Villanueva Micó, Rafael Jacinto es_ES
dc.date.accessioned 2021-02-11T04:32:13Z
dc.date.available 2021-02-11T04:32:13Z
dc.date.issued 2020-10-14 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161047
dc.description.abstract [EN] We consider a randomized discrete logistic equation to describe the dynamics of breast tumor volume. We propose a method, that takes advantage of the principle of maximum entropy, to assign reliable distributions to model inputs (initial condition and coefficients) and sample data, respectively. Since the distributions of coefficients depend on certain parameters, we design a computational procedure to determine the above mentioned parameters using the information of the probabilistic distributions. The proposed method is successfully applied to model the breast tumor volume using real data. The approach seems to be flexible enough to be adapted to other stochastic models in future contributions. es_ES
dc.description.sponsorship This work has been supported by the Spanish Ministerio de Economia, Industria y Competitividad (MINECO), the Agencia Estatal de Investigacion (AEI), and Fondo Europeo de Desarrollo Regional (FEDER UE) Grants MTM2017-89664-P and RTI2018-095180-B-I00. es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof European Physical Journal Plus es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Maximum entropy principle es_ES
dc.subject Computational model fitting es_ES
dc.subject Volume tumor growth es_ES
dc.subject Uncertainty treatment es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Modeling breast tumor growth by a randomized logistic model: A computational approach to treat uncertainties via probability densities es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1140/epjp/s13360-020-00853-3 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095180-B-I00/ES/SISTEMA ADAPTATIVO BIOINSPIRADO PARA EL CONTROL GLUCEMICO BASADO EN SENSORES Y ACCESORIOS INTELIGENTES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.description.bibliographicCitation Burgos-Simón, C.; Cortés, J.; Martínez-Rodríguez, D.; Villanueva Micó, RJ. (2020). Modeling breast tumor growth by a randomized logistic model: A computational approach to treat uncertainties via probability densities. European Physical Journal Plus. 135(10):1-14. https://doi.org/10.1140/epjp/s13360-020-00853-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://www.doi.org/10.1140/epjp/s13360-020-00853-3 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 135 es_ES
dc.description.issue 10 es_ES
dc.identifier.eissn 2190-5444 es_ES
dc.relation.pasarela S\419645 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references D. Delen, G. Walker, A. Kadam, Predicting breast cancer survivability: a comparison of three data mining methods. Artif. Intell. Med. 34(2), 113–127 (2005) es_ES
dc.description.references H.-C. Wei, Mathematical modeling of tumor growth: the mcf-7 breast cancer cell line 16(mbe–16–06–325), 6512 (2019). https://doi.org/10.3934/mbe.2019325 es_ES
dc.description.references N. Bellomo, E. de Angelis, Selected Topics in Cancer Modeling: Genesis, Evolution, Immune Competition, and Therapy (Springer Science & Business Media, Cham, 2008) es_ES
dc.description.references N. Boyd, L. Martin, A. Gunasekara, O. Melnichouk, G. Maudsley, C. Peressotti, M. Yaffe, S. Minkin, Mammographic density and breast cancer risk: evaluation of a novel method of measuring breast tissue volumes. Cancer Epidemiol. Prevent. Biomark. 18(6), 1754–1762 (2009). https://doi.org/10.1158/1055-9965.EPI-09-0107 es_ES
dc.description.references J.E. Joy, E.E. Penhoet, D.B. Petitti, Saving women’s Lives: Strategies for Improving Breast Cancer Detection and Diagnosis (National Academies Press (US), Washington, 2005) es_ES
dc.description.references J.V. Michalowicz, J.M. Nichols, F. Bucholtz, Handbook of Differential Entropy (CRC Press, Boca Raton, 2013) es_ES
dc.description.references C. Burgos-Simón, N. García-Medina, D. Martínez-Rodríguez, R.-J. Villanueva, Mathematical modeling of the dynamics of the bladder cancer and the immune response applied to a patient: evolution and short-term prediction. Math. Methods Appl. Sci. 42(17), 5746–5757 (2019). https://doi.org/10.1002/mma.5536 es_ES
dc.description.references J. Manimaran, L. Shangerganesh, A. Debbouche, V. Antonov, Numerical solutions for time-fractional cancer invasion system with nonlocal diffusion. Front. Phys. 7, 93 (2019). https://doi.org/10.3389/fphy.2019.00093 es_ES
dc.description.references S. Chakraborty, A. Debbouche, P.K. Roy, A mathematical modelling for treatment of HPV associated cervical cancer: Nk and effector t cell based control study. Nonlinear Stud. 27(2), 325–336 (2020) es_ES
dc.description.references D.-A. Botesteanu, S. Lipkowitz, J.-M. Lee, D. Levy, Mathematical models of breast and ovarian cancers. Wiley Interdiscip. Rev. Syst. Biol. Med. 8(4), 337–362 (2016). https://doi.org/10.1002/wsbm.1343 es_ES
dc.description.references N.C. Atuegwu, L.R. Arlinghaus, X. Li, A.B. Chakravarthy, V.G. Abramson, M.E. Sanders, T.E. Yankeelov, Parameterizing the logistic model of tumor growth by DW-MRI and DCE-MRI data to predict treatment response and changes in breast cancer cellularity during neoadjuvant chemotherapy. Transl. Oncol. 6(3), 256–264 (2013). https://doi.org/10.1593/tlo.13130 es_ES
dc.description.references H. Enderling, M.A. Chaplain, A.R. Anderson, J.S. Vaidya, A mathematical model of breast cancer development, local treatment and recurrence. J. Theor. Biol. 246(2), 245–259 (2007). https://doi.org/10.1016/j.jtbi.2006.12.010 es_ES
dc.description.references E. Allen, Modeling with Itô Stochastic Differential Equations, vol. 22 (Springer Science & Business Media, Cham, 2007) es_ES
dc.description.references D. Nualart, The Malliavin Calculus and Related Topics, vol. 1995 (Springer, Berlin, 2006) es_ES
dc.description.references R.C. Smith, Uncertainly Quantification: Theory, Implementation, and Applications. Computational Science & Engineering (SIAM, Philadelphia, 2013) es_ES
dc.description.references M.-C. Casabán, J.-C. Cortés, J.-V. Romero, M.-D. Roselló, Probabilistic solution of random SI-type epidemiological models using the random variable transformation technique. Commun. Nonlinear Sci. Numer. Simul. 24, 86–97 (2015). https://doi.org/10.1016/j.cnsns.2014.12.016 es_ES
dc.description.references M.-C. Casabán, J.-C. Cortés, A. Navarro-Quiles, J.-V. Romero, M.-D. Roselló, R.-J. Villanueva, A comprehensive probabilistic solution of random SIS-type epidemiological models using the random variable transformation technique. Commun. Nonlinear Sci. Numer. Simul. 32, 199–210 (2016). https://doi.org/10.1016/j.cnsns.2015.08.009 es_ES
dc.description.references M. Ezechiáš, T. Cajthaml, Receptor partial agonism and method to express receptor partial activation with respect to novel full logistic model of mixture toxicology. Toxicology 393, 26–33 (2018) es_ES
dc.description.references F. Brauer, C. Castillo-Chavez, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, vol. 2 (Springer, Berlin, 2012) es_ES
dc.description.references C. Salas-Eljatib, A. Fuentes-Ramirez, T.G. Gregoire, A. Altamirano, V. Yaitul, A study on the effects of unbalanced data when fitting logistic regression models in ecology. Ecol. Ind. 85, 502–508 (2018) es_ES
dc.description.references V.G. Vaidya, F.J. Alexandro Jr., Evaluation of some mathematical models for tumor growth. Int. J. Biomed. Comput. 13(1), 19–35 (1982). https://doi.org/10.1016/0020-7101(82)90048-4 es_ES
dc.description.references E.C. Pielou, An Introduction to Mathematical Ecology (Wiley-Inter-science, New York, 1969) es_ES
dc.description.references J.G. Skellam, Random dispersal in theoretical populations. Biometrika 38(1/2), 196–218 (1951) es_ES
dc.description.references P.-F. Verhulst, Notice sur la loi que la population suit dans son accroissement. Corresp. Math. Phys. 10, 113–126 (1838) es_ES
dc.description.references T.T. Soong, Random differential equations in science and engineering (Academic Press, 1973). ISBN 978-0-12-654850-1 es_ES
dc.description.references J.-C. Cortés, A. Navarro-Quiles, J.-V. Romero, M.-D. Roselló, (cmmse2018 paper) solving the random Pielou logistic equation with the random variable transformation technique: theory and applications. Math. Methods Appl. Sci. 42(17), 5708–5717 (2019). https://doi.org/10.1002/mma.5440 es_ES
dc.description.references A. Worschech, N. Chen, A.Y. Yong, Q. Zhang, Z. Pos, S. Weibel, V. Raab, M. Sabatino, A. Monaco, H. Liu et al., Systemic treatment of xenografts with vaccinia virus glv-1h68 reveals the immunologic facet of oncolytic therapy. BMC Genom. 10(1), 301 (2009). https://doi.org/10.1186/1471-2164-10-301 es_ES
dc.description.references H. Caysa, S. Hoffmann, J. Luetzkendorf, L.P. Mueller, S. Unverzagt, K. Mäder, T. Mueller, Monitoring of xenograft tumor growth and response to chemotherapy by non-invasive in vivo multispectral fluorescence imaging. PLoS ONE 7(10), e47927 (2012) es_ES
dc.description.references The MathWorks Inc. (2020) Particle Swarm Optimization. https://es.mathworks.com/help/gads/particleswarm.html es_ES
dc.description.references L. Devroye, Nonuniform random variate generation. Handb. Oper. Res. Manag. Sci. 13, 83–121 (2006) es_ES
dc.description.references T. Weise, Global optimization algorithms-theory and application. Self-Published Thomas Weise (2009) es_ES
dc.description.references N. Khemka, C. Jacob, Exploratory toolkit for evolutionary and swarm-based optimization. Math. J. 11(3), 376–391 (2010). https://doi.org/10.3888/tmj.11.3-5 es_ES
dc.description.references Y. Khan, H. Vazquez-Leal, Q. Wu, An efficient iterated method for mathematical biology model. Neural Comput. Appl. 23(3–4), 677–682 (2013) es_ES
dc.description.references E.F.D. Goufo, Y. Khan, Q.A. Chaudhry, Hiv and shifting epicenters for covid-19, an alert for some countries. Chaos Solitons Fractals 139, 110030 (2020) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem