Mostrar el registro sencillo del ítem
dc.contributor.author | BARAGAÑA GARATE, ITZIAR | es_ES |
dc.contributor.author | Roca Martinez, Alicia | es_ES |
dc.date.accessioned | 2021-02-11T04:32:15Z | |
dc.date.available | 2021-02-11T04:32:15Z | |
dc.date.issued | 2020-03-15 | es_ES |
dc.identifier.issn | 0024-3795 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161048 | |
dc.description.abstract | [EN] A characterization of the structure of a regular matrix pencil obtained by a bounded rank perturbation of another regular matrix pencil has been recently obtained. The result generalizes the solution for the bounded rank perturbation problem of a square constant matrix. When comparing the fixed rank perturbation problem of a constant matrix with the bounded rank perturbation problem we realize that both problems are of different nature; the first one is more restrictive. In this paper we characterize the structure of a regular matrix pencil obtained by a fixed rank perturbation of another regular matrix pencil. We apply the result to find necessary and sufficient conditions for the existence of a fixed rank perturbation such that the perturbed pencil has a prescribed determinant. The results hold over fields with sufficient number of elements. (C) 2019 Elsevier Inc. All rights reserved. | es_ES |
dc.description.sponsorship | The first author was partially supported by "Ministerio de Economia, Industria y Competitividad (MINECO)" of Spain and "Fondo Europeo de Desarrollo Regional (FEDER)" of EU through grants MTM2017-83624-P and MTM2017-90682-REDT, and by UPV/EHU through grant GIU16/42. The second author was partially supported by "Ministerio de Economia, Industria y Competitividad (MINECO)" of Spain and "Fondo Europeo de Desarrollo Regional (FEDER)" of EU through grants MTM2017-83624-P and MTM2017-90682-REDT. We would like to thank the Reviewer for his/her valuable remarks and comments. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Linear Algebra and its Applications | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Regular matrix pencil | es_ES |
dc.subject | Weierstrass structure | es_ES |
dc.subject | Fixed rank perturbation | es_ES |
dc.subject | Matrix spectral perturbation theory | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Fixed rank perturbations of regular matrix pencils | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.laa.2019.12.022 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//MTM2017-90682-REDT/ES/RED TEMATICA DE ALGEBRA LINEAL, ANALISIS MATRICIAL Y APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV%2FEHU//GIU16%2F42/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83624-P/ES/MODELOS POLINOMIALES, SISTEMAS CUADRATICOS Y MATRICES: ESTRUCTURA, LINEALIZACIONES Y PERTURBACION/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Baragaña Garate, I.; Roca Martinez, A. (2020). Fixed rank perturbations of regular matrix pencils. Linear Algebra and its Applications. 589:201-221. https://doi.org/10.1016/j.laa.2019.12.022 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.laa.2019.12.022 | es_ES |
dc.description.upvformatpinicio | 201 | es_ES |
dc.description.upvformatpfin | 221 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 589 | es_ES |
dc.relation.pasarela | S\400278 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universidad del País Vasco/Euskal Herriko Unibertsitatea | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | De Terán, F., & Dopico, F. M. (2007). Low Rank Perturbation of Kronecker Structures without Full Rank. SIAM Journal on Matrix Analysis and Applications, 29(2), 496-529. doi:10.1137/060659922 | es_ES |
dc.description.references | De Terán, F., & Dopico, F. M. (2016). Generic Change of the Partial Multiplicities of Regular Matrix Pencils under Low-Rank Perturbations. SIAM Journal on Matrix Analysis and Applications, 37(3), 823-835. doi:10.1137/15m1022069 | es_ES |
dc.description.references | De Terán, F., Dopico, F. M., & Moro, J. (2008). Low Rank Perturbation of Weierstrass Structure. SIAM Journal on Matrix Analysis and Applications, 30(2), 538-547. doi:10.1137/050633020 | es_ES |
dc.description.references | Dodig, M., & Stošić, M. (2014). The rank distance problem for pairs of matrices and a completion of quasi-regular matrix pencils. Linear Algebra and its Applications, 457, 313-347. doi:10.1016/j.laa.2014.05.029 | es_ES |
dc.description.references | Gernandt, H., & Trunk, C. (2017). Eigenvalue Placement for Regular Matrix Pencils with Rank One Perturbations. SIAM Journal on Matrix Analysis and Applications, 38(1), 134-154. doi:10.1137/16m1066877 | es_ES |
dc.description.references | Moro, J., & Dopico, F. M. (2003). Low Rank Perturbation of Jordan Structure. SIAM Journal on Matrix Analysis and Applications, 25(2), 495-506. doi:10.1137/s0895479802417118 | es_ES |
dc.description.references | Savchenko, S. V. (2003). Mathematical Notes, 74(3/4), 557-568. doi:10.1023/a:1026104129373 | es_ES |
dc.description.references | Savchenko, S. V. (2004). On the Change in the Spectral Properties of a Matrix under Perturbations of Sufficiently Low Rank. Functional Analysis and Its Applications, 38(1), 69-71. doi:10.1023/b:faia.0000024871.00388.4c | es_ES |
dc.description.references | Silva, F. C. (1988). The rank of the difference of matrices with prescribed similarity classes. Linear and Multilinear Algebra, 24(1), 51-58. doi:10.1080/03081088808817897 | es_ES |
dc.description.references | Thompson, R. C. (1980). Invariant Factors Under Rank One Perturbations. Canadian Journal of Mathematics, 32(1), 240-245. doi:10.4153/cjm-1980-018-9 | es_ES |
dc.description.references | Zaballa, I. (1991). Pole Assignment and Additive Perturbations of Fixed Rank. SIAM Journal on Matrix Analysis and Applications, 12(1), 16-23. doi:10.1137/0612003 | es_ES |