- -

Argonaute PIWI domain and microRNA duplex structure contribute to small RNA sorting in Arabidopsis.

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Argonaute PIWI domain and microRNA duplex structure contribute to small RNA sorting in Arabidopsis.

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zhang, Xiaoming es_ES
dc.contributor.author Niu, DongDong es_ES
dc.contributor.author CARBONELL, ALBERTO es_ES
dc.contributor.author Wang, Airong es_ES
dc.contributor.author Lee, Angel es_ES
dc.contributor.author Tun, Vinnary es_ES
dc.contributor.author Wang, Zonghua es_ES
dc.contributor.author Carrington, James C. es_ES
dc.contributor.author Chang, Chia-en A. es_ES
dc.contributor.author Jin, Hailing es_ES
dc.date.accessioned 2021-02-11T04:32:20Z
dc.date.available 2021-02-11T04:32:20Z
dc.date.issued 2014-11-16 es_ES
dc.identifier.issn 2041-1723 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161051
dc.description.abstract [EN] Small RNAs (sRNAs) are loaded into ARGONAUTE (AGO) proteins to induce gene silencing. In plants, the 5¿-terminal nucleotide is important for sRNA sorting into different AGOs. Here we show that microRNA (miRNA) duplex structure also contributes to miRNA sorting. Base pairing at the 15th nucleotide of a miRNA duplex is important for miRNA sorting in both Arabidopsis ¿AGO1 and ¿AGO2. ¿AGO2 favours miRNA duplexes with no middle mismatches, whereas ¿AGO1 tolerates, or prefers, duplexes with central mismatches. AGO structure modelling and mutational analyses reveal that the QF-V motif within the conserved PIWI domain contributes to recognition of base pairing at the 15th nucleotide of a duplex, while the DDDE catalytic core of ¿AtAGO2 is important for recognition of the central nucleotides. Finally, we rescued the adaxialized phenotype of ¿ago1-12, which is largely due to miR165 loss-of-function, by changing miR165 duplex structure which we predict redirects it to ¿AGO2. es_ES
dc.description.sponsorship We thank Yifan E. Lii, Patricia Springer and Hongwei Zhao for helpful comments; Yijun Qi, Xuemei Chen, David Baulcombe, Olivier Voinnet and Robert A. Martienssen for providing antibodies, constructs and seeds. This work was supported by an NIH (R01 GM093008), an NSF Career Award (MCB-0642843), an NSF Award (IOS-1257576) and an AES-CE Award (PPA-7517H) to H.J., and by NIH (AI043288) and NSF (MCB-0956526, MCB-1231726) grants to J.C.C. We thank Rizi Ai and Wanli You for constructing the protein and RNA complex structures es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject RNA silencing es_ES
dc.subject Argonaute es_ES
dc.subject Small RNA es_ES
dc.subject MicroRNA es_ES
dc.title Argonaute PIWI domain and microRNA duplex structure contribute to small RNA sorting in Arabidopsis. es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/ncomms6468 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//0956526/US/Function of Arabidopsis Small RNA-ARGONAUTE Complexes/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//0642843/US/CAREER:Genome-wide Analysis of Pathogen-induced Endogenous siRNAs in Plant Defense Responses in Arabidopsis/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//R01GM093008/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//AI043288/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1257576/US/Investigate the role of small RNAs of a necrotrophic fungal pathogen B. cinerea in suppressing host Immunity/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1231726/US/Function of Arabidopsis Small RNA-ARGONAUTE Complexes/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Zhang, X.; Niu, D.; Carbonell, A.; Wang, A.; Lee, A.; Tun, V.; Wang, Z.... (2014). Argonaute PIWI domain and microRNA duplex structure contribute to small RNA sorting in Arabidopsis. Nature Communications. 5:1-11. https://doi.org/10.1038/ncomms6468 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/ncomms6468 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.identifier.pmid 25406978 es_ES
dc.identifier.pmcid PMC4238042 es_ES
dc.relation.pasarela S\378022 es_ES
dc.contributor.funder National Science Foundation, EEUU es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.description.references Zamore, P. D. & Haley, B. Ribo-gnome: The big world of small RNAs. Science 309, 1519–1524 (2005). es_ES
dc.description.references Chapman, E. J. & Carrington, J. C. Specialization and evolution of endogenous small RNA pathways. Nat. Rev. Genet. 8, 884–896 (2007). es_ES
dc.description.references Martínez de Alba, A. E., Elvira-Matelot, E. & Vaucheret, H. Gene silencing in plants: a diversity of pathways. Biochim. Biophys. Acta 1829, 1300–1308 (2013). es_ES
dc.description.references Song, J. J., Smith, S. K., Hannon, G. J. & Joshua-Tor, L. Crystal structure of argonaute and its implications for RISC slicer activity. Science 305, 1434–1437 (2004). es_ES
dc.description.references Poulsen, C., Vaucheret, H. & Brodersen, P. Lessons on RNA silencing mechanisms in plants from eukaryotic argonaute structures. Plant Cell 25, 22–37 (2013). es_ES
dc.description.references Wang, Y. et al. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456, 921–U72 (2008). es_ES
dc.description.references Schirle, N. T. & MacRae, I. J. The crystal structure of human Argonaute2. Science 336, 1037–1040 (2012). es_ES
dc.description.references Elkayam, E. et al. The structure of human Argonaute-2 in complex with miR-20a. Cell 150, 100–110 (2012). es_ES
dc.description.references Boland, A., Huntzinger, E., Schmidt, S., Izaurralde, E. & Weichenrieder, O. Crystal structure of the MID-PIWI lobe of a eukaryotic Argonaute protein. Proc. Natl Acad. Sci. USA 108, 10466–10471 (2011). es_ES
dc.description.references Ma, J.-B., Ye, K. & Patel, D. J. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429, 318–322 (2004). es_ES
dc.description.references Nakanishi, K., Weinberg, D. E., Bartel, D. P. & Patel, D. J. Structure of yeast Argonaute with guide RNA. Nature 486, 368–374 (2012). es_ES
dc.description.references Faehnle, C. R., Elkayam, E., Haase, A. D., Hannon, G. J. & Joshua-Tor, L. The making of a slicer: activation of human argonaute-1. Cell Rep. 3, 1901–1909 (2013). es_ES
dc.description.references Nakanishi, K. et al. Eukaryote-specific insertion elements control human ARGONAUTE slicer activity. Cell Rep. 3, 1893–1900 (2013). es_ES
dc.description.references Khvorova, A., Reynolds, A. & Jayasena, S. D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003). es_ES
dc.description.references Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003). es_ES
dc.description.references Tomari, Y., Du, T. & Zamore, P. D. Sorting of Drosophila small silencing RNAs. Cell 130, 299–308 (2007). es_ES
dc.description.references Ghildiyal, M. et al. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 320, 1077–1081 (2008). es_ES
dc.description.references Ameres, S. L. et al. Target RNA–directed trimming and tailing of small silencing RNAs. Science 328, 1534–1539 (2010). es_ES
dc.description.references Kawamata, T., Seitz, H. & Tomari, Y. Structural determinants of miRNAs for RISC loading and slicer-independent unwinding. Nat. Struct. Mol. Biol. 16, 953–U77 (2009). es_ES
dc.description.references Czech, B. et al. An endogenous small interfering RNA pathway in Drosophila. Nature 453, 798–U7 (2008). es_ES
dc.description.references Czech, B. et al. Hierarchical rules for argonaute loading in Drosophila. Mol. Cell 36, 445–456 (2009). es_ES
dc.description.references Ghildiyal, M., Xu, J., Seitz, H., Weng, Z. P. & Zamore, P. D. Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. RNA 16, 43–56 (2010). es_ES
dc.description.references Ameres, S. L., Hung, J.-H., Xu, J., Weng, Z. & Zamore, P. D. Target RNA-directed tailing and trimming purifies the sorting of endo-siRNAs between the two Drosophila Argonaute proteins. RNA 17, 54–63 (2011). es_ES
dc.description.references Förstemann, K., Horwich, M. D., Wee, L., Tomari, Y. & Zamore, P. D. Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by Dicer-1. Cell 130, 287–297 (2007). es_ES
dc.description.references Steiner, F. A. et al. Structural features of small RNA precursors determine Argonaute loading in Caenorhabditis elegans. Nat. Struct. Mol. Biol. 14, 927–933 (2007). es_ES
dc.description.references Frank, F., Sonenberg, N. & Nagar, B. Structural basis for 5'-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 465, 818–822 (2010). es_ES
dc.description.references Czech, B. & Hannon, G. J. Small RNA sorting: matchmaking for Argonautes. Nat. Rev. Genet. 12, 19–31 (2010). es_ES
dc.description.references Meister, G. Argonaute proteins: functional insights and emerging roles. Nat. Rev. Genet. 14, 447–459 (2013). es_ES
dc.description.references Montgomery, T. A. et al. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133, 128–141 (2008). es_ES
dc.description.references Mi, S. J. et al. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5 ' terminal nucleotide. Cell 133, 116–127 (2008). es_ES
dc.description.references Mallory, A. & Vaucheret, H. Form, function, and regulation of ARGONAUTE proteins. Plant Cell 22, 3879–3889 (2010). es_ES
dc.description.references Vaucheret, H. Plant ARGONAUTES. Trends Plant Sci. 13, 350–358 (2008). es_ES
dc.description.references Zhu, H. L. et al. Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 145, 242–256 (2011). es_ES
dc.description.references Endo, Y., Iwakawa, H.-O. & Tomari, Y. Arabidopsis ARGONAUTE7 selects miR390 through multiple checkpoints during RISC assembly. EMBO Rep. 14, 652–658 (2013). es_ES
dc.description.references Maunoury, N. & Vaucheret, H. AGO1 and AGO2 act redundantly in miR408-mediated Plantacyanin regulation. PLoS ONE 6, e28729 (2011). es_ES
dc.description.references Zhang, X. M. et al. Arabidopsis Argonaute 2 regulates innate immunity via miRNA393*-mediated silencing of a golgi-localized SNARE gene, MEMB12. Mol. Cell 42, 356–366 (2011). es_ES
dc.description.references Okamura, K., Liu, N. & Lai, E. C. Distinct mechanisms for microRNA strand selection by Drosophila Argonautes. Mol. Cell 36, 431–444 (2009). es_ES
dc.description.references Carbonell, A. et al. Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants. Plant Cell 24, 3613–3629 (2012). es_ES
dc.description.references Kidner, C. A. & Martienssen, R. A. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature 428, 81–84 (2004). es_ES
dc.description.references McConnell, J. R. et al. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411, 709–713 (2001). es_ES
dc.description.references Mallory, A. C. et al. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J. 23, 3356–3364 (2004). es_ES
dc.description.references McConnell, J. R. & Barton, M. K. Leaf polarity and meristem formation in Arabidopsis. Development 125, 2935–2942 (1998). es_ES
dc.description.references Eamens, A. L., Smith, N. A., Curtin, S. J., Wang, M. B. & Waterhouse, P. M. The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes. RNA 15, 2219–2235 (2009). es_ES
dc.description.references Takeda, A., Iwasaki, S., Watanabe, T., Utsumi, M. & Watanabe, Y. The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins. Plant Cell Physiol. 49, 493–500 (2008). es_ES
dc.description.references Li, S. B. et al. MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 153, 562–574 (2013). es_ES
dc.description.references Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. Model. 14, 33–38 (1996). es_ES
dc.description.references Notredame, C., Higgins, D. G. & Heringa, J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205–217 (2000). es_ES
dc.description.references Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22, 195–201 (2006). es_ES
dc.description.references Pedretti, A., Villa, L. & Vistoli, G. VEGA—An open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J. Comput. Aided Mol. Des. 18, 167–173 (2004). es_ES
dc.description.references Brooks, B. R. et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009). es_ES
dc.description.references Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem