Mostrar el registro sencillo del ítem
dc.contributor.author | Calatayud, Julia | es_ES |
dc.contributor.author | Caraballo, Tomás | es_ES |
dc.contributor.author | Cortés, J.-C. | es_ES |
dc.contributor.author | Jornet, Marc | es_ES |
dc.date.accessioned | 2021-02-11T04:32:52Z | |
dc.date.available | 2021-02-11T04:32:52Z | |
dc.date.issued | 2020-05-26 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161056 | |
dc.description.abstract | [EN] In this article we analyze the randomized non-autonomous Bertalanffy model x' (t, omega) = a(t, omega)x(t, omega) b(t, omega)x(t, omega)(2/3), x(t(0), omega) = x(0)(omega), where a(t, omega) and b(t, omega) are stochastic processes and x(0)(omega) is a random variable, all of them defined in an underlying complete probability space. Under certain assumptions on a, b and x(0), we obtain a solution stochastic process, x(t, omega), both in the sample path and in the mean square senses. By using the random variable transformation technique and Karhunen-Loeve expansions, we construct a sequence of probability density functions that under certain conditions converge pointwise or uniformly to the density function of x(t, omega), f (t) (x). This permits approximating the expectation and the variance of x(t, omega). At the end, numerical experiments are carried out to put in practice our theoretical findings. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministerio de Economia, Industria y Competitividad (MINECO), by the Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER UE) grant MTM2017-89664-P. Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y Desarrollo (PAID), Universitat Politecnica de Valencia. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Texas State University. Department of Mathematics | es_ES |
dc.relation.ispartof | Electronic Journal of Differential Equations | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Random non-autonomous Bertalanffy model | es_ES |
dc.subject | Random differential equation | es_ES |
dc.subject | Random variable transformation technique | es_ES |
dc.subject | Karhunen-Loeve expansion | es_ES |
dc.subject | Probability density function | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Mathematical methods for the randomized non-autonomous Bertalanffy model | es_ES |
dc.type | Artículo | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Calatayud, J.; Caraballo, T.; Cortés, J.; Jornet, M. (2020). Mathematical methods for the randomized non-autonomous Bertalanffy model. Electronic Journal of Differential Equations. 2020:1-19. http://hdl.handle.net/10251/161056 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://ejde.math.txstate.edu/ | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2020 | es_ES |
dc.identifier.eissn | 1072-6691 | es_ES |
dc.relation.pasarela | S\412755 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |