- -

Characterization of Powdered Lulo (Solanum quitoense) Bagasse as a Functional Food Ingredient

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Characterization of Powdered Lulo (Solanum quitoense) Bagasse as a Functional Food Ingredient

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hinestroza-Córdoba, Leidy Indira es_ES
dc.contributor.author Duarte-Serna, Stevens es_ES
dc.contributor.author Seguí Gil, Lucía es_ES
dc.contributor.author Barrera Puigdollers, Cristina es_ES
dc.contributor.author Betoret Valls, Noelia es_ES
dc.date.accessioned 2021-02-13T04:31:25Z
dc.date.available 2021-02-13T04:31:25Z
dc.date.issued 2020-06 es_ES
dc.identifier.issn 2304-8158 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161194
dc.description.abstract [EN] The stabilization of fruit bagasse by drying and milling technology is a valuable processing technology to improve its durability and preserve its valuable biologically active components. The objective of this study was to evaluate the effect of lyophilization and air temperature (60 degrees C and 70 degrees C) in hot air-drying as well as grinding conditions (coarse or fine granulometry) on physico-chemical properties; water interaction capacity; antioxidant properties; and carotenoid content of powdered lulo bagasse. Air-drying kinetics at 60 degrees C and 70 degrees C and sorption isotherms at 20 degrees C were also determined. Results showed that drying conditions influence antioxidant properties and carotenoid content while granulometry slightly influenced fiber and water interaction properties. Fiber content was near 50% and carotenoid content was higher than 60 mu g/g dry matter in lyophilized powder. This beta-carotene content is comparable to that provided by carrot juice. Air-drying at 60 degrees C only reduced carotenoids content by 10%. es_ES
dc.description.sponsorship This research and APC were funded by Generalitat Valenciana, Project AICO/2017/'049. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Foods es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Fruit by-products es_ES
dc.subject Lulo bagasse powder es_ES
dc.subject Dehydration es_ES
dc.subject Fiber es_ES
dc.subject Antioxidant properties es_ES
dc.subject Carotenoids es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Characterization of Powdered Lulo (Solanum quitoense) Bagasse as a Functional Food Ingredient es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/foods9060723 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2017%2F049/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Hinestroza-Córdoba, LI.; Duarte-Serna, S.; Seguí Gil, L.; Barrera Puigdollers, C.; Betoret Valls, N. (2020). Characterization of Powdered Lulo (Solanum quitoense) Bagasse as a Functional Food Ingredient. Foods. 9(6):1-16. https://doi.org/10.3390/foods9060723 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/foods9060723 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 6 es_ES
dc.identifier.pmid 32498370 es_ES
dc.identifier.pmcid PMC7353594 es_ES
dc.relation.pasarela S\414504 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Forero, D. P., Orrego, C. E., Peterson, D. G., & Osorio, C. (2015). Chemical and sensory comparison of fresh and dried lulo (Solanum quitoense Lam.) fruit aroma. Food Chemistry, 169, 85-91. doi:10.1016/j.foodchem.2014.07.111 es_ES
dc.description.references Gancel, A.-L., Alter, P., Dhuique-Mayer, C., Ruales, J., & Vaillant, F. (2008). Identifying Carotenoids and Phenolic Compounds In Naranjilla (Solanum quitoense Lam. Var. Puyo Hybrid), an Andean Fruit. Journal of Agricultural and Food Chemistry, 56(24), 11890-11899. doi:10.1021/jf801515p es_ES
dc.description.references Forero, D. P., Masatani, C., Fujimoto, Y., Coy-Barrera, E., Peterson, D. G., & Osorio, C. (2016). Spermidine Derivatives in Lulo (Solanum quitoense Lam.) Fruit: Sensory (Taste) versus Biofunctional (ACE-Inhibition) Properties. Journal of Agricultural and Food Chemistry, 64(26), 5375-5383. doi:10.1021/acs.jafc.6b01631 es_ES
dc.description.references De Moraes Crizel, T., Jablonski, A., de Oliveira Rios, A., Rech, R., & Flôres, S. H. (2013). Dietary fiber from orange byproducts as a potential fat replacer. LWT - Food Science and Technology, 53(1), 9-14. doi:10.1016/j.lwt.2013.02.002 es_ES
dc.description.references Karam, M. C., Petit, J., Zimmer, D., Baudelaire Djantou, E., & Scher, J. (2016). Effects of drying and grinding in production of fruit and vegetable powders: A review. Journal of Food Engineering, 188, 32-49. doi:10.1016/j.jfoodeng.2016.05.001 es_ES
dc.description.references Majerska, J., Michalska, A., & Figiel, A. (2019). A review of new directions in managing fruit and vegetable processing by-products. Trends in Food Science & Technology, 88, 207-219. doi:10.1016/j.tifs.2019.03.021 es_ES
dc.description.references Mimouni, A., Deeth, H. C., Whittaker, A. K., Gidley, M. J., & Bhandari, B. R. (2009). Rehydration process of milk protein concentrate powder monitored by static light scattering. Food Hydrocolloids, 23(7), 1958-1965. doi:10.1016/j.foodhyd.2009.01.010 es_ES
dc.description.references Cai, Y. Z., & Corke, H. (2000). Production and Properties of Spray-dried Amaranthus Betacyanin Pigments. Journal of Food Science, 65(7), 1248-1252. doi:10.1111/j.1365-2621.2000.tb10273.x es_ES
dc.description.references Freudig, B., Hogekamp, S., & Schubert, H. (1999). Dispersion of powders in liquids in a stirred vessel. Chemical Engineering and Processing: Process Intensification, 38(4-6), 525-532. doi:10.1016/s0255-2701(99)00049-5 es_ES
dc.description.references Raghavendra, S. N., Rastogi, N. K., Raghavarao, K. S. M. S., & Tharanathan, R. N. (2004). Dietary fiber from coconut residue: effects of different treatments and particle size on the hydration properties. European Food Research and Technology, 218(6), 563-567. doi:10.1007/s00217-004-0889-2 es_ES
dc.description.references Robertson, J. A., de Monredon, F. D., Dysseler, P., Guillon, F., Amado, R., & Thibault, J.-F. (2000). Hydration Properties of Dietary Fibre and Resistant Starch: a European Collaborative Study. LWT - Food Science and Technology, 33(2), 72-79. doi:10.1006/fstl.1999.0595 es_ES
dc.description.references Garau, M. C., Simal, S., Rosselló, C., & Femenia, A. (2007). Effect of air-drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food Chemistry, 104(3), 1014-1024. doi:10.1016/j.foodchem.2007.01.009 es_ES
dc.description.references Yasumatsu, K., Sawada, K., Moritaka, S., Misaki, M., Toda, J., Wada, T., & Ishii, K. (1972). Whipping and Emulsifying Properties of Soybean Products. Agricultural and Biological Chemistry, 36(5), 719-727. doi:10.1080/00021369.1972.10860321 es_ES
dc.description.references Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 152-178. doi:10.1016/s0076-6879(99)99017-1 es_ES
dc.description.references Wolfe, K., Wu, X., & Liu, R. H. (2003). Antioxidant Activity of Apple Peels. Journal of Agricultural and Food Chemistry, 51(3), 609-614. doi:10.1021/jf020782a es_ES
dc.description.references Luximon-Ramma, A., Bahorun, T., Crozier, A., Zbarsky, V., Datla, K. P., Dexter, D. T., & Aruoma, O. I. (2005). Characterization of the antioxidant functions of flavonoids and proanthocyanidins in Mauritian black teas. Food Research International, 38(4), 357-367. doi:10.1016/j.foodres.2004.10.005 es_ES
dc.description.references Kuskoski, E. M., Asuero, A. G., Troncoso, A. M., Mancini-Filho, J., & Fett, R. (2005). Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Ciência e Tecnologia de Alimentos, 25(4), 726-732. doi:10.1590/s0101-20612005000400016 es_ES
dc.description.references Stratil, P., Klejdus, B., & Kubáň, V. (2006). Determination of Total Content of Phenolic Compounds and Their Antioxidant Activity in VegetablesEvaluation of Spectrophotometric Methods. Journal of Agricultural and Food Chemistry, 54(3), 607-616. doi:10.1021/jf052334j es_ES
dc.description.references Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. doi:10.1016/s0891-5849(98)00315-3 es_ES
dc.description.references Rodrigues, E., Mariutti, L. R. B., & Mercadante, A. Z. (2013). Carotenoids and Phenolic Compounds from Solanum sessiliflorum, an Unexploited Amazonian Fruit, and Their Scavenging Capacities against Reactive Oxygen and Nitrogen Species. Journal of Agricultural and Food Chemistry, 61(12), 3022-3029. doi:10.1021/jf3054214 es_ES
dc.description.references Bunea, A., Andjelkovic, M., Socaciu, C., Bobis, O., Neacsu, M., Verhé, R., & Camp, J. V. (2008). Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chemistry, 108(2), 649-656. doi:10.1016/j.foodchem.2007.11.056 es_ES
dc.description.references Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society, 62(7), 1723-1732. doi:10.1021/ja01864a025 es_ES
dc.description.references Martínez-Las Heras, R., Heredia, A., Castelló, M. L., & Andrés, A. (2014). Moisture sorption isotherms and isosteric heat of sorption of dry persimmon leaves. Food Bioscience, 7, 88-94. doi:10.1016/j.fbio.2014.06.002 es_ES
dc.description.references Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309-319. doi:10.1021/ja01269a023 es_ES
dc.description.references Vesterlund, S., Salminen, K., & Salminen, S. (2012). Water activity in dry foods containing live probiotic bacteria should be carefully considered: A case study with Lactobacillus rhamnosus GG in flaxseed. International Journal of Food Microbiology, 157(2), 319-321. doi:10.1016/j.ijfoodmicro.2012.05.016 es_ES
dc.description.references Viuda-Martos, M., Ruiz-Navajas, Y., Martin-Sánchez, A., Sánchez-Zapata, E., Fernández-López, J., Sendra, E., … Pérez-Álvarez, J. A. (2012). Chemical, physico-chemical and functional properties of pomegranate (Punica granatum L.) bagasses powder co-product. Journal of Food Engineering, 110(2), 220-224. doi:10.1016/j.jfoodeng.2011.05.029 es_ES
dc.description.references Llobera, A., & Cañellas, J. (2007). Dietary fibre content and antioxidant activity of Manto Negro red grape (Vitis vinifera): pomace and stem. Food Chemistry, 101(2), 659-666. doi:10.1016/j.foodchem.2006.02.025 es_ES
dc.description.references Sudha, M. L., Baskaran, V., & Leelavathi, K. (2007). Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chemistry, 104(2), 686-692. doi:10.1016/j.foodchem.2006.12.016 es_ES
dc.description.references Happi Emaga, T., Robert, C., Ronkart, S. N., Wathelet, B., & Paquot, M. (2008). Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties. Bioresource Technology, 99(10), 4346-4354. doi:10.1016/j.biortech.2007.08.030 es_ES
dc.description.references Figuerola, F., Hurtado, M. L., Estévez, A. M., Chiffelle, I., & Asenjo, F. (2005). Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chemistry, 91(3), 395-401. doi:10.1016/j.foodchem.2004.04.036 es_ES
dc.description.references Amaya-Cruz, D. M., Rodríguez-González, S., Pérez-Ramírez, I. F., Loarca-Piña, G., Amaya-Llano, S., Gallegos-Corona, M. A., & Reynoso-Camacho, R. (2015). Juice by-products as a source of dietary fibre and antioxidants and their effect on hepatic steatosis. Journal of Functional Foods, 17, 93-102. doi:10.1016/j.jff.2015.04.051 es_ES
dc.description.references Larrauri, J. . (1999). New approaches in the preparation of high dietary fibre powders from fruit by-products. Trends in Food Science & Technology, 10(1), 3-8. doi:10.1016/s0924-2244(99)00016-3 es_ES
dc.description.references (2010). Scientific Opinion on Dietary Reference Values for carbohydrates and dietary fibre. EFSA Journal, 8(3). doi:10.2903/j.efsa.2010.1462 es_ES
dc.description.references Viuda-Martos, M., López-Marcos, M. C., Fernández-López, J., Sendra, E., López-Vargas, J. H., & Pérez-Álvarez, J. A. (2010). Role of Fiber in Cardiovascular Diseases: A Review. Comprehensive Reviews in Food Science and Food Safety, 9(2), 240-258. doi:10.1111/j.1541-4337.2009.00102.x es_ES
dc.description.references Lucas-González, R., Viuda-Martos, M., Pérez-Álvarez, J. Á., & Fernández-López, J. (2017). Evaluation of Particle Size Influence on Proximate Composition, Physicochemical, Techno-Functional and Physio-Functional Properties of Flours Obtained from Persimmon (Diospyros kaki Trumb.) Coproducts. Plant Foods for Human Nutrition, 72(1), 67-73. doi:10.1007/s11130-016-0592-z es_ES
dc.description.references Park, H.-J., Lee, Y., & Eun, J.-B. (2016). Physicochemical characteristics of kimchi powder manufactured by hot air drying and freeze drying. Biocatalysis and Agricultural Biotechnology, 5, 193-198. doi:10.1016/j.bcab.2016.02.002 es_ES
dc.description.references Sousa, A. S. de, Borges, S. V., Magalhães, N. F., Ricardo, H. V., & Azevedo, A. D. (2008). Spray-dried tomato powder: reconstitution properties and colour. Brazilian Archives of Biology and Technology, 51(4), 607-614. doi:10.1590/s1516-89132008000400019 es_ES
dc.description.references Bakar, J., Ee, S. C., Muhammad, K., Hashim, D. M., & Adzahan, N. (2012). Spray-Drying Optimization for Red Pitaya Peel (Hylocereus polyrhizus). Food and Bioprocess Technology, 6(5), 1332-1342. doi:10.1007/s11947-012-0842-5 es_ES
dc.description.references Bhusari, S. N., Muzaffar, K., & Kumar, P. (2014). Effect of carrier agents on physical and microstructural properties of spray dried tamarind pulp powder. Powder Technology, 266, 354-364. doi:10.1016/j.powtec.2014.06.038 es_ES
dc.description.references Ahmed, A. M., Ishida, Y., & Shimamoto, T. (2009). Molecular characterization of antimicrobial resistance inSalmonellaisolated from animals in Japan. Journal of Applied Microbiology, 106(2), 402-409. doi:10.1111/j.1365-2672.2008.04009.x es_ES
dc.description.references Lecumberri, E., Mateos, R., Izquierdo-Pulido, M., Rupérez, P., Goya, L., & Bravo, L. (2007). Dietary fibre composition, antioxidant capacity and physico-chemical properties of a fibre-rich product from cocoa (Theobroma cacao L.). Food Chemistry, 104(3), 948-954. doi:10.1016/j.foodchem.2006.12.054 es_ES
dc.description.references Serna-Cock, L., Torres-León, C., & Ayala-Aponte, A. (2015). Evaluación de Polvos Alimentarios obtenidos de Cáscaras de Mango (Mangifera indica) como fuente de Ingredientes Funcionales. Información tecnológica, 26(2), 41-50. doi:10.4067/s0718-07642015000200006 es_ES
dc.description.references Karnik, D., & Wicker, L. (2018). Emulsion stability of sugar beet pectin fractions obtained by isopropanol fractionation. Food Hydrocolloids, 74, 249-254. doi:10.1016/j.foodhyd.2017.07.041 es_ES
dc.description.references Martínez-Las Heras, R., Landines, E. F., Heredia, A., Castelló, M. L., & Andrés, A. (2017). Influence of drying process and particle size of persimmon fibre on its physicochemical, antioxidant, hydration and emulsifying properties. Journal of Food Science and Technology, 54(9), 2902-2912. doi:10.1007/s13197-017-2728-z es_ES
dc.description.references Mphahlele, R. R., Fawole, O. A., Makunga, N. P., & Opara, U. L. (2016). Effect of drying on the bioactive compounds, antioxidant, antibacterial and antityrosinase activities of pomegranate peel. BMC Complementary and Alternative Medicine, 16(1). doi:10.1186/s12906-016-1132-y es_ES
dc.description.references Crozier, S. J., Preston, A. G., Hurst, J. W., Payne, M. J., Mann, J., Hainly, L., & Miller, D. L. (2011). Cacao seeds are a «Super Fruit»: A comparative analysis of various fruit powders and products. Chemistry Central Journal, 5(1). doi:10.1186/1752-153x-5-5 es_ES
dc.description.references Michalska, A., Wojdyło, A., Lech, K., Łysiak, G. P., & Figiel, A. (2017). Effect of different drying techniques on physical properties, total polyphenols and antioxidant capacity of blackcurrant pomace powders. LWT, 78, 114-121. doi:10.1016/j.lwt.2016.12.008 es_ES
dc.description.references Dorta, E., Lobo, M. G., & Gonzalez, M. (2011). Reutilization of Mango Byproducts: Study of the Effect of Extraction Solvent and Temperature on Their Antioxidant Properties. Journal of Food Science, 77(1), C80-C88. doi:10.1111/j.1750-3841.2011.02477.x es_ES
dc.description.references Rana, S., Gupta, S., Rana, A., & Bhushan, S. (2015). Functional properties, phenolic constituents and antioxidant potential of industrial apple pomace for utilization as active food ingredient. Food Science and Human Wellness, 4(4), 180-187. doi:10.1016/j.fshw.2015.10.001 es_ES
dc.description.references Ozgen, M., Reese, R. N., Tulio, A. Z., Scheerens, J. C., & Miller, A. R. (2006). Modified 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic Acid (ABTS) Method to Measure Antioxidant Capacity of Selected Small Fruits and Comparison to Ferric Reducing Antioxidant Power (FRAP) and 2,2‘-Diphenyl-1-picrylhydrazyl (DPPH) Methods. Journal of Agricultural and Food Chemistry, 54(4), 1151-1157. doi:10.1021/jf051960d es_ES
dc.description.references Del Caro, A., Piga, A., Vacca, V., & Agabbio, M. (2004). Changes of flavonoids, vitamin C and antioxidant capacity in minimally processed citrus segments and juices during storage. Food Chemistry, 84(1), 99-105. doi:10.1016/s0308-8146(03)00180-8 es_ES
dc.description.references Silva, L. M. R. da, Figueiredo, E. A. T. de, Ricardo, N. M. P. S., Vieira, I. G. P., Figueiredo, R. W. de, Brasil, I. M., & Gomes, C. L. (2014). Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chemistry, 143, 398-404. doi:10.1016/j.foodchem.2013.08.001 es_ES
dc.description.references Albanese, D., Adiletta, G., D′Acunto, M., Cinquanta, L., & Di Matteo, M. (2014). Tomato peel drying and carotenoids stability of the extracts. International Journal of Food Science & Technology, 49(11), 2458-2463. doi:10.1111/ijfs.12602 es_ES
dc.description.references Bub, A., Watzl, B., Abrahamse, L., Delincée, H., Adam, S., Wever, J., … Rechkemmer, G. (2000). Moderate Intervention with Carotenoid-Rich Vegetable Products Reduces Lipid Peroxidation in Men. The Journal of Nutrition, 130(9), 2200-2206. doi:10.1093/jn/130.9.2200 es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem