Mostrar el registro sencillo del ítem
dc.contributor.author | Hinestroza-Córdoba, Leidy Indira | es_ES |
dc.contributor.author | Duarte-Serna, Stevens | es_ES |
dc.contributor.author | Seguí Gil, Lucía | es_ES |
dc.contributor.author | Barrera Puigdollers, Cristina | es_ES |
dc.contributor.author | Betoret Valls, Noelia | es_ES |
dc.date.accessioned | 2021-02-13T04:31:25Z | |
dc.date.available | 2021-02-13T04:31:25Z | |
dc.date.issued | 2020-06 | es_ES |
dc.identifier.issn | 2304-8158 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161194 | |
dc.description.abstract | [EN] The stabilization of fruit bagasse by drying and milling technology is a valuable processing technology to improve its durability and preserve its valuable biologically active components. The objective of this study was to evaluate the effect of lyophilization and air temperature (60 degrees C and 70 degrees C) in hot air-drying as well as grinding conditions (coarse or fine granulometry) on physico-chemical properties; water interaction capacity; antioxidant properties; and carotenoid content of powdered lulo bagasse. Air-drying kinetics at 60 degrees C and 70 degrees C and sorption isotherms at 20 degrees C were also determined. Results showed that drying conditions influence antioxidant properties and carotenoid content while granulometry slightly influenced fiber and water interaction properties. Fiber content was near 50% and carotenoid content was higher than 60 mu g/g dry matter in lyophilized powder. This beta-carotene content is comparable to that provided by carrot juice. Air-drying at 60 degrees C only reduced carotenoids content by 10%. | es_ES |
dc.description.sponsorship | This research and APC were funded by Generalitat Valenciana, Project AICO/2017/'049. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Foods | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Fruit by-products | es_ES |
dc.subject | Lulo bagasse powder | es_ES |
dc.subject | Dehydration | es_ES |
dc.subject | Fiber | es_ES |
dc.subject | Antioxidant properties | es_ES |
dc.subject | Carotenoids | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Characterization of Powdered Lulo (Solanum quitoense) Bagasse as a Functional Food Ingredient | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/foods9060723 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2017%2F049/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Hinestroza-Córdoba, LI.; Duarte-Serna, S.; Seguí Gil, L.; Barrera Puigdollers, C.; Betoret Valls, N. (2020). Characterization of Powdered Lulo (Solanum quitoense) Bagasse as a Functional Food Ingredient. Foods. 9(6):1-16. https://doi.org/10.3390/foods9060723 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/foods9060723 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 6 | es_ES |
dc.identifier.pmid | 32498370 | es_ES |
dc.identifier.pmcid | PMC7353594 | es_ES |
dc.relation.pasarela | S\414504 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Forero, D. P., Orrego, C. E., Peterson, D. G., & Osorio, C. (2015). Chemical and sensory comparison of fresh and dried lulo (Solanum quitoense Lam.) fruit aroma. Food Chemistry, 169, 85-91. doi:10.1016/j.foodchem.2014.07.111 | es_ES |
dc.description.references | Gancel, A.-L., Alter, P., Dhuique-Mayer, C., Ruales, J., & Vaillant, F. (2008). Identifying Carotenoids and Phenolic Compounds In Naranjilla (Solanum quitoense Lam. Var. Puyo Hybrid), an Andean Fruit. Journal of Agricultural and Food Chemistry, 56(24), 11890-11899. doi:10.1021/jf801515p | es_ES |
dc.description.references | Forero, D. P., Masatani, C., Fujimoto, Y., Coy-Barrera, E., Peterson, D. G., & Osorio, C. (2016). Spermidine Derivatives in Lulo (Solanum quitoense Lam.) Fruit: Sensory (Taste) versus Biofunctional (ACE-Inhibition) Properties. Journal of Agricultural and Food Chemistry, 64(26), 5375-5383. doi:10.1021/acs.jafc.6b01631 | es_ES |
dc.description.references | De Moraes Crizel, T., Jablonski, A., de Oliveira Rios, A., Rech, R., & Flôres, S. H. (2013). Dietary fiber from orange byproducts as a potential fat replacer. LWT - Food Science and Technology, 53(1), 9-14. doi:10.1016/j.lwt.2013.02.002 | es_ES |
dc.description.references | Karam, M. C., Petit, J., Zimmer, D., Baudelaire Djantou, E., & Scher, J. (2016). Effects of drying and grinding in production of fruit and vegetable powders: A review. Journal of Food Engineering, 188, 32-49. doi:10.1016/j.jfoodeng.2016.05.001 | es_ES |
dc.description.references | Majerska, J., Michalska, A., & Figiel, A. (2019). A review of new directions in managing fruit and vegetable processing by-products. Trends in Food Science & Technology, 88, 207-219. doi:10.1016/j.tifs.2019.03.021 | es_ES |
dc.description.references | Mimouni, A., Deeth, H. C., Whittaker, A. K., Gidley, M. J., & Bhandari, B. R. (2009). Rehydration process of milk protein concentrate powder monitored by static light scattering. Food Hydrocolloids, 23(7), 1958-1965. doi:10.1016/j.foodhyd.2009.01.010 | es_ES |
dc.description.references | Cai, Y. Z., & Corke, H. (2000). Production and Properties of Spray-dried Amaranthus Betacyanin Pigments. Journal of Food Science, 65(7), 1248-1252. doi:10.1111/j.1365-2621.2000.tb10273.x | es_ES |
dc.description.references | Freudig, B., Hogekamp, S., & Schubert, H. (1999). Dispersion of powders in liquids in a stirred vessel. Chemical Engineering and Processing: Process Intensification, 38(4-6), 525-532. doi:10.1016/s0255-2701(99)00049-5 | es_ES |
dc.description.references | Raghavendra, S. N., Rastogi, N. K., Raghavarao, K. S. M. S., & Tharanathan, R. N. (2004). Dietary fiber from coconut residue: effects of different treatments and particle size on the hydration properties. European Food Research and Technology, 218(6), 563-567. doi:10.1007/s00217-004-0889-2 | es_ES |
dc.description.references | Robertson, J. A., de Monredon, F. D., Dysseler, P., Guillon, F., Amado, R., & Thibault, J.-F. (2000). Hydration Properties of Dietary Fibre and Resistant Starch: a European Collaborative Study. LWT - Food Science and Technology, 33(2), 72-79. doi:10.1006/fstl.1999.0595 | es_ES |
dc.description.references | Garau, M. C., Simal, S., Rosselló, C., & Femenia, A. (2007). Effect of air-drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food Chemistry, 104(3), 1014-1024. doi:10.1016/j.foodchem.2007.01.009 | es_ES |
dc.description.references | Yasumatsu, K., Sawada, K., Moritaka, S., Misaki, M., Toda, J., Wada, T., & Ishii, K. (1972). Whipping and Emulsifying Properties of Soybean Products. Agricultural and Biological Chemistry, 36(5), 719-727. doi:10.1080/00021369.1972.10860321 | es_ES |
dc.description.references | Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 152-178. doi:10.1016/s0076-6879(99)99017-1 | es_ES |
dc.description.references | Wolfe, K., Wu, X., & Liu, R. H. (2003). Antioxidant Activity of Apple Peels. Journal of Agricultural and Food Chemistry, 51(3), 609-614. doi:10.1021/jf020782a | es_ES |
dc.description.references | Luximon-Ramma, A., Bahorun, T., Crozier, A., Zbarsky, V., Datla, K. P., Dexter, D. T., & Aruoma, O. I. (2005). Characterization of the antioxidant functions of flavonoids and proanthocyanidins in Mauritian black teas. Food Research International, 38(4), 357-367. doi:10.1016/j.foodres.2004.10.005 | es_ES |
dc.description.references | Kuskoski, E. M., Asuero, A. G., Troncoso, A. M., Mancini-Filho, J., & Fett, R. (2005). Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Ciência e Tecnologia de Alimentos, 25(4), 726-732. doi:10.1590/s0101-20612005000400016 | es_ES |
dc.description.references | Stratil, P., Klejdus, B., & Kubáň, V. (2006). Determination of Total Content of Phenolic Compounds and Their Antioxidant Activity in VegetablesEvaluation of Spectrophotometric Methods. Journal of Agricultural and Food Chemistry, 54(3), 607-616. doi:10.1021/jf052334j | es_ES |
dc.description.references | Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. doi:10.1016/s0891-5849(98)00315-3 | es_ES |
dc.description.references | Rodrigues, E., Mariutti, L. R. B., & Mercadante, A. Z. (2013). Carotenoids and Phenolic Compounds from Solanum sessiliflorum, an Unexploited Amazonian Fruit, and Their Scavenging Capacities against Reactive Oxygen and Nitrogen Species. Journal of Agricultural and Food Chemistry, 61(12), 3022-3029. doi:10.1021/jf3054214 | es_ES |
dc.description.references | Bunea, A., Andjelkovic, M., Socaciu, C., Bobis, O., Neacsu, M., Verhé, R., & Camp, J. V. (2008). Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chemistry, 108(2), 649-656. doi:10.1016/j.foodchem.2007.11.056 | es_ES |
dc.description.references | Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society, 62(7), 1723-1732. doi:10.1021/ja01864a025 | es_ES |
dc.description.references | Martínez-Las Heras, R., Heredia, A., Castelló, M. L., & Andrés, A. (2014). Moisture sorption isotherms and isosteric heat of sorption of dry persimmon leaves. Food Bioscience, 7, 88-94. doi:10.1016/j.fbio.2014.06.002 | es_ES |
dc.description.references | Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309-319. doi:10.1021/ja01269a023 | es_ES |
dc.description.references | Vesterlund, S., Salminen, K., & Salminen, S. (2012). Water activity in dry foods containing live probiotic bacteria should be carefully considered: A case study with Lactobacillus rhamnosus GG in flaxseed. International Journal of Food Microbiology, 157(2), 319-321. doi:10.1016/j.ijfoodmicro.2012.05.016 | es_ES |
dc.description.references | Viuda-Martos, M., Ruiz-Navajas, Y., Martin-Sánchez, A., Sánchez-Zapata, E., Fernández-López, J., Sendra, E., … Pérez-Álvarez, J. A. (2012). Chemical, physico-chemical and functional properties of pomegranate (Punica granatum L.) bagasses powder co-product. Journal of Food Engineering, 110(2), 220-224. doi:10.1016/j.jfoodeng.2011.05.029 | es_ES |
dc.description.references | Llobera, A., & Cañellas, J. (2007). Dietary fibre content and antioxidant activity of Manto Negro red grape (Vitis vinifera): pomace and stem. Food Chemistry, 101(2), 659-666. doi:10.1016/j.foodchem.2006.02.025 | es_ES |
dc.description.references | Sudha, M. L., Baskaran, V., & Leelavathi, K. (2007). Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chemistry, 104(2), 686-692. doi:10.1016/j.foodchem.2006.12.016 | es_ES |
dc.description.references | Happi Emaga, T., Robert, C., Ronkart, S. N., Wathelet, B., & Paquot, M. (2008). Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties. Bioresource Technology, 99(10), 4346-4354. doi:10.1016/j.biortech.2007.08.030 | es_ES |
dc.description.references | Figuerola, F., Hurtado, M. L., Estévez, A. M., Chiffelle, I., & Asenjo, F. (2005). Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chemistry, 91(3), 395-401. doi:10.1016/j.foodchem.2004.04.036 | es_ES |
dc.description.references | Amaya-Cruz, D. M., Rodríguez-González, S., Pérez-Ramírez, I. F., Loarca-Piña, G., Amaya-Llano, S., Gallegos-Corona, M. A., & Reynoso-Camacho, R. (2015). Juice by-products as a source of dietary fibre and antioxidants and their effect on hepatic steatosis. Journal of Functional Foods, 17, 93-102. doi:10.1016/j.jff.2015.04.051 | es_ES |
dc.description.references | Larrauri, J. . (1999). New approaches in the preparation of high dietary fibre powders from fruit by-products. Trends in Food Science & Technology, 10(1), 3-8. doi:10.1016/s0924-2244(99)00016-3 | es_ES |
dc.description.references | (2010). Scientific Opinion on Dietary Reference Values for carbohydrates and dietary fibre. EFSA Journal, 8(3). doi:10.2903/j.efsa.2010.1462 | es_ES |
dc.description.references | Viuda-Martos, M., López-Marcos, M. C., Fernández-López, J., Sendra, E., López-Vargas, J. H., & Pérez-Álvarez, J. A. (2010). Role of Fiber in Cardiovascular Diseases: A Review. Comprehensive Reviews in Food Science and Food Safety, 9(2), 240-258. doi:10.1111/j.1541-4337.2009.00102.x | es_ES |
dc.description.references | Lucas-González, R., Viuda-Martos, M., Pérez-Álvarez, J. Á., & Fernández-López, J. (2017). Evaluation of Particle Size Influence on Proximate Composition, Physicochemical, Techno-Functional and Physio-Functional Properties of Flours Obtained from Persimmon (Diospyros kaki Trumb.) Coproducts. Plant Foods for Human Nutrition, 72(1), 67-73. doi:10.1007/s11130-016-0592-z | es_ES |
dc.description.references | Park, H.-J., Lee, Y., & Eun, J.-B. (2016). Physicochemical characteristics of kimchi powder manufactured by hot air drying and freeze drying. Biocatalysis and Agricultural Biotechnology, 5, 193-198. doi:10.1016/j.bcab.2016.02.002 | es_ES |
dc.description.references | Sousa, A. S. de, Borges, S. V., Magalhães, N. F., Ricardo, H. V., & Azevedo, A. D. (2008). Spray-dried tomato powder: reconstitution properties and colour. Brazilian Archives of Biology and Technology, 51(4), 607-614. doi:10.1590/s1516-89132008000400019 | es_ES |
dc.description.references | Bakar, J., Ee, S. C., Muhammad, K., Hashim, D. M., & Adzahan, N. (2012). Spray-Drying Optimization for Red Pitaya Peel (Hylocereus polyrhizus). Food and Bioprocess Technology, 6(5), 1332-1342. doi:10.1007/s11947-012-0842-5 | es_ES |
dc.description.references | Bhusari, S. N., Muzaffar, K., & Kumar, P. (2014). Effect of carrier agents on physical and microstructural properties of spray dried tamarind pulp powder. Powder Technology, 266, 354-364. doi:10.1016/j.powtec.2014.06.038 | es_ES |
dc.description.references | Ahmed, A. M., Ishida, Y., & Shimamoto, T. (2009). Molecular characterization of antimicrobial resistance inSalmonellaisolated from animals in Japan. Journal of Applied Microbiology, 106(2), 402-409. doi:10.1111/j.1365-2672.2008.04009.x | es_ES |
dc.description.references | Lecumberri, E., Mateos, R., Izquierdo-Pulido, M., Rupérez, P., Goya, L., & Bravo, L. (2007). Dietary fibre composition, antioxidant capacity and physico-chemical properties of a fibre-rich product from cocoa (Theobroma cacao L.). Food Chemistry, 104(3), 948-954. doi:10.1016/j.foodchem.2006.12.054 | es_ES |
dc.description.references | Serna-Cock, L., Torres-León, C., & Ayala-Aponte, A. (2015). Evaluación de Polvos Alimentarios obtenidos de Cáscaras de Mango (Mangifera indica) como fuente de Ingredientes Funcionales. Información tecnológica, 26(2), 41-50. doi:10.4067/s0718-07642015000200006 | es_ES |
dc.description.references | Karnik, D., & Wicker, L. (2018). Emulsion stability of sugar beet pectin fractions obtained by isopropanol fractionation. Food Hydrocolloids, 74, 249-254. doi:10.1016/j.foodhyd.2017.07.041 | es_ES |
dc.description.references | Martínez-Las Heras, R., Landines, E. F., Heredia, A., Castelló, M. L., & Andrés, A. (2017). Influence of drying process and particle size of persimmon fibre on its physicochemical, antioxidant, hydration and emulsifying properties. Journal of Food Science and Technology, 54(9), 2902-2912. doi:10.1007/s13197-017-2728-z | es_ES |
dc.description.references | Mphahlele, R. R., Fawole, O. A., Makunga, N. P., & Opara, U. L. (2016). Effect of drying on the bioactive compounds, antioxidant, antibacterial and antityrosinase activities of pomegranate peel. BMC Complementary and Alternative Medicine, 16(1). doi:10.1186/s12906-016-1132-y | es_ES |
dc.description.references | Crozier, S. J., Preston, A. G., Hurst, J. W., Payne, M. J., Mann, J., Hainly, L., & Miller, D. L. (2011). Cacao seeds are a «Super Fruit»: A comparative analysis of various fruit powders and products. Chemistry Central Journal, 5(1). doi:10.1186/1752-153x-5-5 | es_ES |
dc.description.references | Michalska, A., Wojdyło, A., Lech, K., Łysiak, G. P., & Figiel, A. (2017). Effect of different drying techniques on physical properties, total polyphenols and antioxidant capacity of blackcurrant pomace powders. LWT, 78, 114-121. doi:10.1016/j.lwt.2016.12.008 | es_ES |
dc.description.references | Dorta, E., Lobo, M. G., & Gonzalez, M. (2011). Reutilization of Mango Byproducts: Study of the Effect of Extraction Solvent and Temperature on Their Antioxidant Properties. Journal of Food Science, 77(1), C80-C88. doi:10.1111/j.1750-3841.2011.02477.x | es_ES |
dc.description.references | Rana, S., Gupta, S., Rana, A., & Bhushan, S. (2015). Functional properties, phenolic constituents and antioxidant potential of industrial apple pomace for utilization as active food ingredient. Food Science and Human Wellness, 4(4), 180-187. doi:10.1016/j.fshw.2015.10.001 | es_ES |
dc.description.references | Ozgen, M., Reese, R. N., Tulio, A. Z., Scheerens, J. C., & Miller, A. R. (2006). Modified 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic Acid (ABTS) Method to Measure Antioxidant Capacity of Selected Small Fruits and Comparison to Ferric Reducing Antioxidant Power (FRAP) and 2,2‘-Diphenyl-1-picrylhydrazyl (DPPH) Methods. Journal of Agricultural and Food Chemistry, 54(4), 1151-1157. doi:10.1021/jf051960d | es_ES |
dc.description.references | Del Caro, A., Piga, A., Vacca, V., & Agabbio, M. (2004). Changes of flavonoids, vitamin C and antioxidant capacity in minimally processed citrus segments and juices during storage. Food Chemistry, 84(1), 99-105. doi:10.1016/s0308-8146(03)00180-8 | es_ES |
dc.description.references | Silva, L. M. R. da, Figueiredo, E. A. T. de, Ricardo, N. M. P. S., Vieira, I. G. P., Figueiredo, R. W. de, Brasil, I. M., & Gomes, C. L. (2014). Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chemistry, 143, 398-404. doi:10.1016/j.foodchem.2013.08.001 | es_ES |
dc.description.references | Albanese, D., Adiletta, G., D′Acunto, M., Cinquanta, L., & Di Matteo, M. (2014). Tomato peel drying and carotenoids stability of the extracts. International Journal of Food Science & Technology, 49(11), 2458-2463. doi:10.1111/ijfs.12602 | es_ES |
dc.description.references | Bub, A., Watzl, B., Abrahamse, L., Delincée, H., Adam, S., Wever, J., … Rechkemmer, G. (2000). Moderate Intervention with Carotenoid-Rich Vegetable Products Reduces Lipid Peroxidation in Men. The Journal of Nutrition, 130(9), 2200-2206. doi:10.1093/jn/130.9.2200 | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |
dc.subject.ods | 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible | es_ES |
dc.subject.ods | 12.- Garantizar las pautas de consumo y de producción sostenibles | es_ES |