- -

A family of optimal fourth-order methods for multiple roots of nonlinear equations

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A family of optimal fourth-order methods for multiple roots of nonlinear equations

Show full item record

Zafar, F.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2020). A family of optimal fourth-order methods for multiple roots of nonlinear equations. Mathematical Methods in the Applied Sciences. 43(14):7869-7884. https://doi.org/10.1002/mma.5384

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161200

Files in this item

Item Metadata

Title: A family of optimal fourth-order methods for multiple roots of nonlinear equations
Author: Zafar, Fiza Cordero Barbero, Alicia Torregrosa Sánchez, Juan Ramón
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] Newton-Raphson method has always remained as the widely used method for finding simple and multiple roots of nonlinear equations. In the past years, many new methods have been introduced for finding multiple zeros ...[+]
Subjects: Nonlinear Equations , Multiple zeroes , Optimal methods , Weight functions
Copyrigths: Reserva de todos los derechos
Source:
Mathematical Methods in the Applied Sciences. (issn: 0170-4214 )
DOI: 10.1002/mma.5384
Publisher:
John Wiley & Sons
Publisher version: https://doi.org/10.1002/mma.5384
Project ID:
info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/
Thanks:
This research was partially supported by Ministerio de Economía y Competitividad MTM2014¿52016¿C2¿2¿P, Generalitat ValencianaPROMETEO/2016/089, and Schlumberger Foundation¿Faculty for Future Program
Type: Artículo

References

Neta, B., & Johnson, A. N. (2008). High-order nonlinear solver for multiple roots. Computers & Mathematics with Applications, 55(9), 2012-2017. doi:10.1016/j.camwa.2007.09.001

Neta, B. (2010). Extension of Murakami’s high-order non-linear solver to multiple roots. International Journal of Computer Mathematics, 87(5), 1023-1031. doi:10.1080/00207160802272263

Li, S. G., Cheng, L. Z., & Neta, B. (2010). Some fourth-order nonlinear solvers with closed formulae for multiple roots. Computers & Mathematics with Applications, 59(1), 126-135. doi:10.1016/j.camwa.2009.08.066 [+]
Neta, B., & Johnson, A. N. (2008). High-order nonlinear solver for multiple roots. Computers & Mathematics with Applications, 55(9), 2012-2017. doi:10.1016/j.camwa.2007.09.001

Neta, B. (2010). Extension of Murakami’s high-order non-linear solver to multiple roots. International Journal of Computer Mathematics, 87(5), 1023-1031. doi:10.1080/00207160802272263

Li, S. G., Cheng, L. Z., & Neta, B. (2010). Some fourth-order nonlinear solvers with closed formulae for multiple roots. Computers & Mathematics with Applications, 59(1), 126-135. doi:10.1016/j.camwa.2009.08.066

Zhou, X., Chen, X., & Song, Y. (2011). Constructing higher-order methods for obtaining the multiple roots of nonlinear equations. Journal of Computational and Applied Mathematics, 235(14), 4199-4206. doi:10.1016/j.cam.2011.03.014

Sharifi, M., Babajee, D. K. R., & Soleymani, F. (2012). Finding the solution of nonlinear equations by a class of optimal methods. Computers & Mathematics with Applications, 63(4), 764-774. doi:10.1016/j.camwa.2011.11.040

Soleymani, F., Babajee, D. K. R., & Lotfi, T. (2013). On a numerical technique for finding multiple zeros and its dynamic. Journal of the Egyptian Mathematical Society, 21(3), 346-353. doi:10.1016/j.joems.2013.03.011

Soleymani, F., & Babajee, D. K. R. (2013). Computing multiple zeros using a class of quartically convergent methods. Alexandria Engineering Journal, 52(3), 531-541. doi:10.1016/j.aej.2013.05.001

Hueso, J. L., Martínez, E., & Teruel, C. (2014). Determination of multiple roots of nonlinear equations and applications. Journal of Mathematical Chemistry, 53(3), 880-892. doi:10.1007/s10910-014-0460-8

Behl, R., Cordero, A., Motsa, S. S., Torregrosa, J. R., & Kanwar, V. (2015). An optimal fourth-order family of methods for multiple roots and its dynamics. Numerical Algorithms, 71(4), 775-796. doi:10.1007/s11075-015-0023-5

Behl, R., Cordero, A., Motsa, S. S., & Torregrosa, J. R. (2017). Multiplicity anomalies of an optimal fourth-order class of iterative methods for solving nonlinear equations. Nonlinear Dynamics, 91(1), 81-112. doi:10.1007/s11071-017-3858-6

Blanchard, P. (1984). Complex analytic dynamics on the Riemann sphere. Bulletin of the American Mathematical Society, 11(1), 85-141. doi:10.1090/s0273-0979-1984-15240-6

Beardon, A. F. (Ed.). (1991). Iteration of Rational Functions. Graduate Texts in Mathematics. doi:10.1007/978-1-4612-4422-6

Chicharro, F. I., Cordero, A., & Torregrosa, J. R. (2013). Drawing Dynamical and Parameters Planes of Iterative Families and Methods. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/780153

Jay, L. O. (2001). Bit Numerical Mathematics, 41(2), 422-429. doi:10.1023/a:1021902825707

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record