- -

Intestinal Explant Cultures from Gilthead Seabream (Sparus aurata, L.) Allowed the Determination of Mucosal Sensitivity to Bacterial Pathogens and the Impact of a Plant Protein Diet

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Intestinal Explant Cultures from Gilthead Seabream (Sparus aurata, L.) Allowed the Determination of Mucosal Sensitivity to Bacterial Pathogens and the Impact of a Plant Protein Diet

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Peñaranda, D.S. es_ES
dc.contributor.author Bäuerl, Christine es_ES
dc.contributor.author Tomas-Vidal, A. es_ES
dc.contributor.author Jover Cerda, Miguel es_ES
dc.contributor.author Estruch, Guillem es_ES
dc.contributor.author Pérez Martínez, Gaspar es_ES
dc.contributor.author Martínez-Llorens, Silvia es_ES
dc.date.accessioned 2021-02-16T04:32:05Z
dc.date.available 2021-02-16T04:32:05Z
dc.date.issued 2020-10 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161380
dc.description.abstract [EN] The interaction between diet and intestinal health has been widely discussed, although in vivo approaches have reported limitations. The intestine explant culture system developed provides an advantage since it reduces the number of experimental fish and increases the time of incubation compared to similar methods, becoming a valuable tool in the study of the interactions between pathogenic bacteria, rearing conditions, or dietary components and fish gut immune response. The objective of this study was to determine the influence of the total substitution of fish meal by plants on the immune intestinal status of seabream using an ex vivo bacterial challenge. For this aim, two growth stages of fish were assayed (12 g): phase I (90 days), up to 68 g, and phase II (305 days), up to 250 g. Additionally, in phase II, the effects of long term and short term exposure (15 days) to a plant protein (PP) diet were determined. PP diet altered the mucosal immune homeostasis, the younger fish being more sensitive, and the intestine from fish fed short-term plant diets showed a higher immune response than with long-term feeding. Vibrio alginolyticus (V. alginolyticus) triggered the highest immune and inflammatory response, while COX-2 expression was significantly induced by Photobacterium damselae subsp. Piscicida (P. damselae subsp. Piscicida), showing a positive high correlation between the pro-inflammatory genes encoding interleukin 1 beta (IL1-beta), interleukin 6 (IL-6) and cyclooxygenase 2(COX-2). es_ES
dc.description.sponsorship The research was supported by a grant financed by the Spanish Ministerio de Economia y Competitividad AGL2015-70487-P. and Generalitat Valenciana, IDIFEDER/2020/029 The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. It was additionally granted by Contrato Pre-doctoral para la Formacion de Profesorado Universitario from Subprogramas de Formacion y Movilidad within the Programa Estatal de Promocion del Talento y su Empleabilidad of the Ministerio de Educacion, Cultura y Deporte of Spain. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof International Journal of Molecular Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Gilthead seabream es_ES
dc.subject Ex vivo es_ES
dc.subject Intestine explants culture es_ES
dc.subject RT-qPCR es_ES
dc.subject Inflammation es_ES
dc.subject Plant protein es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Intestinal Explant Cultures from Gilthead Seabream (Sparus aurata, L.) Allowed the Determination of Mucosal Sensitivity to Bacterial Pathogens and the Impact of a Plant Protein Diet es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ijms21207584 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-70487-P/ES/EXPLOTACION DE LOS MECANISMOS DE COMUNICACION BIDIRECCIONAL MICROBIOTA %2FHUESPED EN EL INTESTINO PARA EL DESARROLLO DE NUEVAS ESTRATEGIAS DIETETICAS CON PROBIOTICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU13%2F01278/ES/FPU13%2F01278/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2020%2F029/ES/ADQUISICIÓN DE UN CROMATÓGRAFO UHPLC: HACIA UNA PRODUCCIÓN ANIMAL ECOLÓGICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Peñaranda, D.; Bäuerl, C.; Tomas-Vidal, A.; Jover Cerda, M.; Estruch, G.; Pérez Martínez, G.; Martínez-Llorens, S. (2020). Intestinal Explant Cultures from Gilthead Seabream (Sparus aurata, L.) Allowed the Determination of Mucosal Sensitivity to Bacterial Pathogens and the Impact of a Plant Protein Diet. International Journal of Molecular Sciences. 21(20):1-20. https://doi.org/10.3390/ijms21207584 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ijms21207584 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 20 es_ES
dc.identifier.eissn 1422-0067 es_ES
dc.identifier.pmid 33066515 es_ES
dc.identifier.pmcid PMC7588912 es_ES
dc.relation.pasarela S\419273 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Minghetti, M., Drieschner, C., Bramaz, N., Schug, H., & Schirmer, K. (2017). A fish intestinal epithelial barrier model established from the rainbow trout (Oncorhynchus mykiss) cell line, RTgutGC. Cell Biology and Toxicology, 33(6), 539-555. doi:10.1007/s10565-017-9385-x es_ES
dc.description.references Gómez, G. D., & Balcázar, J. L. (2008). A review on the interactions between gut microbiota and innate immunity of fish: Table 1. FEMS Immunology & Medical Microbiology, 52(2), 145-154. doi:10.1111/j.1574-695x.2007.00343.x es_ES
dc.description.references Jose L Gonzalez Vecino, M. H. (2015). Probiotic and Pathogen Ex-vivo Exposure of Atlantic Salmon (Salmo Salar L.) Intestine from Fish Fed Four Different Protein Sources. Journal of Aquaculture Research & Development, 06(05). doi:10.4172/2155-9546.1000340 es_ES
dc.description.references Nematollahi, A., Decostere, A., Ducatelle, R., Haesebrouck, F., & Pasmans, F. (2005). Development of a gut perfusion model as an alternative to the use of live fish. Laboratory Animals, 39(2), 194-199. doi:10.1258/0023677053739710 es_ES
dc.description.references Lin, Y.-C., & Chen, J.-C. (2001). Acute toxicity of ammonia on Litopenaeus vannamei Boone juveniles at different salinity levels. Journal of Experimental Marine Biology and Ecology, 259(1), 109-119. doi:10.1016/s0022-0981(01)00227-1 es_ES
dc.description.references Nematollahi, A., Pasmans, F., Van den Broeck, W., Ducatelle, R., Haesebrouck, F., & Decostere, A. (2005). Association of Flavobacterium psychrophilum strains with intestinal explants of rainbow trout Oncorhynchus mykiss. Diseases of Aquatic Organisms, 67, 67-72. doi:10.3354/dao067067 es_ES
dc.description.references Harper, G. M., Monfort, M., & Saoud, I. P. (2011). An ex vivo approach to studying the interactions of probiotic Pediococcus acidilactici and Vibrio (Listonella) anguillarum in the anterior intestine of rainbow trout Oncorhynchus mykiss. Journal of Aquaculture Research & Development, s1. doi:10.4172/2155-9546.s1-004 es_ES
dc.description.references Løvmo Martinsen, L., Salma, W., Myklebust, R., Mayhew, T. M., & Ringø, E. (2011). Carnobacterium maltaromaticum vs. Vibrio (Listonella) anguillarum in the midgut of Atlantic cod (Gadus morhua L.): an ex vivo study. Aquaculture Research, 42(12), 1830-1839. doi:10.1111/j.1365-2109.2010.02784.x es_ES
dc.description.references Ren, P., Xu, L., Yang, Y., He, S., Liu, W., Ringø, E., & Zhou, Z. (2013). Lactobacillus planarum subsp. plantarum JCM 1149 vs. Aeromonas hydrophila NJ-1 in the anterior intestine and posterior intestine of hybrid tilapia Oreochromis niloticus ♀ × Oreochromis aureus ♂: An ex vivo study. Fish & Shellfish Immunology, 35(1), 146-153. doi:10.1016/j.fsi.2013.04.023 es_ES
dc.description.references Resau, J. H., Sakamoto, K., Cottrell, J. R., Hudson, E. A., & Meltzer, S. J. (1991). Explant organ culture: A review. Cytotechnology, 7(3), 137-149. doi:10.1007/bf00365924 es_ES
dc.description.references Dame, M. K., Bhagavathula, N., Mankey, C., DaSilva, M., Paruchuri, T., Aslam, M. N., & Varani, J. (2009). Human colon tissue in organ culture: preservation of normal and neoplastic characteristics. In Vitro Cellular & Developmental Biology - Animal, 46(2), 114-122. doi:10.1007/s11626-009-9247-9 es_ES
dc.description.references Bäuerl, C., Llopis, M., Antolín, M., Monedero, V., Mata, M., Zúñiga, M., … Pérez Martínez, G. (2012). Lactobacillus paracasei and Lactobacillus plantarum strains downregulate proinflammatory genes in an ex vivo system of cultured human colonic mucosa. Genes & Nutrition, 8(2), 165-180. doi:10.1007/s12263-012-0301-y es_ES
dc.description.references Monge-Ortiz, R., Martínez-Llorens, S., Márquez, L., Moyano, F. J., Jover-Cerdá, M., & Tomás-Vidal, A. (2016). Potential use of high levels of vegetal proteins in diets for market-sized gilthead sea bream (Sparus aurata). Archives of Animal Nutrition, 70(2), 155-172. doi:10.1080/1745039x.2016.1141743 es_ES
dc.description.references Oliva-Teles, A. (2012). Nutrition and health of aquaculture fish. Journal of Fish Diseases, 35(2), 83-108. doi:10.1111/j.1365-2761.2011.01333.x es_ES
dc.description.references Martínez-Llorens, S., Moñino, A. V., Tomás Vidal, A., Salvador, V. J. M., Pla Torres, M., & Jover Cerdá, M. (2007). Soybean meal as a protein source in gilthead sea bream (Sparus aurata L.) diets: effects on growth and nutrient utilization. Aquaculture Research, 38(1), 82-90. doi:10.1111/j.1365-2109.2006.01637.x es_ES
dc.description.references MARTÍNEZ-LLORENS, S., VIDAL, A. T., GARCIA, I. J., TORRES, M. P., & CERDÁ, M. J. (2009). Optimum dietary soybean meal level for maximizing growth and nutrient utilization of on-growing gilthead sea bream (Sparus aurata). Aquaculture Nutrition, 15(3), 320-328. doi:10.1111/j.1365-2095.2008.00597.x es_ES
dc.description.references Krogdahl, Å., Penn, M., Thorsen, J., Refstie, S., & Bakke, A. M. (2010). Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquaculture Research, 41(3), 333-344. doi:10.1111/j.1365-2109.2009.02426.x es_ES
dc.description.references Krogdahl, Å., Bakke-McKellep, A. M., & Baeverfjord, G. (2003). Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (Salmo salarL.). Aquaculture Nutrition, 9(6), 361-371. doi:10.1046/j.1365-2095.2003.00264.x es_ES
dc.description.references URÁN, P. A., SCHRAMA, J. W., JAAFARI, S., BAARDSEN, G., ROMBOUT, J. H. W. M., KOPPE, W., & VERRETH, J. A. J. (2009). Variation in commercial sources of soybean meal influences the severity of enteritis in Atlantic salmon (Salmo salarL.). Aquaculture Nutrition, 15(5), 492-499. doi:10.1111/j.1365-2095.2008.00615.x es_ES
dc.description.references Kokou, F., Sarropoulou, E., Cotou, E., Rigos, G., Henry, M., Alexis, M., & Kentouri, M. (2015). Effects of Fish Meal Replacement by a Soybean Protein on Growth, Histology, Selected Immune and Oxidative Status Markers of Gilthead Sea Bream, Sparus aurata. Journal of the World Aquaculture Society, 46(2), 115-128. doi:10.1111/jwas.12181 es_ES
dc.description.references Pereira, T. G., & Oliva-Teles, A. (2003). Evaluation of corn gluten meal as a protein source in diets for gilthead sea bream (Sparus aurata L.) juveniles. Aquaculture Research, 34(13), 1111-1117. doi:10.1046/j.1365-2109.2003.00909.x es_ES
dc.description.references Martínez-Llorens, S., Baeza-Ariño, R., Nogales-Mérida, S., Jover-Cerdá, M., & Tomás-Vidal, A. (2012). Carob seed germ meal as a partial substitute in gilthead sea bream (Sparus aurata) diets: Amino acid retention, digestibility, gut and liver histology. Aquaculture, 338-341, 124-133. doi:10.1016/j.aquaculture.2012.01.029 es_ES
dc.description.references Sitjà-Bobadilla, A., Peña-Llopis, S., Gómez-Requeni, P., Médale, F., Kaushik, S., & Pérez-Sánchez, J. (2005). Effect of fish meal replacement by plant protein sources on non-specific defence mechanisms and oxidative stress in gilthead sea bream (Sparus aurata). Aquaculture, 249(1-4), 387-400. doi:10.1016/j.aquaculture.2005.03.031 es_ES
dc.description.references Estensoro, I., Ballester-Lozano, G., Benedito-Palos, L., Grammes, F., Martos-Sitcha, J. A., Mydland, L.-T., … Pérez-Sánchez, J. (2016). Dietary Butyrate Helps to Restore the Intestinal Status of a Marine Teleost (Sparus aurata) Fed Extreme Diets Low in Fish Meal and Fish Oil. PLOS ONE, 11(11), e0166564. doi:10.1371/journal.pone.0166564 es_ES
dc.description.references Kokou, F., Sarropoulou, E., Cotou, E., Kentouri, M., Alexis, M., & Rigos, G. (2017). Effects of graded dietary levels of soy protein concentrate supplemented with methionine and phosphate on the immune and antioxidant responses of gilthead sea bream ( Sparus aurata L.). Fish & Shellfish Immunology, 64, 111-121. doi:10.1016/j.fsi.2017.03.017 es_ES
dc.description.references Couso, N., Castro, R., Magariños, B., Obach, A., & Lamas, J. (2003). Effect of oral administration of glucans on the resistance of gilthead seabream to pasteurellosis. Aquaculture, 219(1-4), 99-109. doi:10.1016/s0044-8486(03)00019-x es_ES
dc.description.references Mauri, I., Romero, A., Acerete, L., MacKenzie, S., Roher, N., Callol, A., … Tort, L. (2011). Changes in complement responses in Gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax) under crowding stress, plus viral and bacterial challenges. Fish & Shellfish Immunology, 30(1), 182-188. doi:10.1016/j.fsi.2010.10.006 es_ES
dc.description.references Reyes-Becerril, M., López-Medina, T., Ascencio-Valle, F., & Esteban, M. Á. (2011). Immune response of gilthead seabream (Sparus aurata) following experimental infection with Aeromonas hydrophila. Fish & Shellfish Immunology. doi:10.1016/j.fsi.2011.07.006 es_ES
dc.description.references Piazzon, M. C., Galindo-Villegas, J., Pereiro, P., Estensoro, I., Calduch-Giner, J. A., Gómez-Casado, E., … Pérez-Sánchez, J. (2016). Differential Modulation of IgT and IgM upon Parasitic, Bacterial, Viral, and Dietary Challenges in a Perciform Fish. Frontiers in Immunology, 7. doi:10.3389/fimmu.2016.00637 es_ES
dc.description.references Monge-Ortiz, R., Tomás-Vidal, A., Gallardo-Álvarez, F. J., Estruch, G., Godoy-Olmos, S., Jover-Cerdá, M., & Martínez-Llorens, S. (2018). Partial and total replacement of fishmeal by a blend of animal and plant proteins in diets for Seriola dumerili : Effects on performance and nutrient efficiency. Aquaculture Nutrition, 24(4), 1163-1174. doi:10.1111/anu.12655 es_ES
dc.description.references Torrecillas, S., Caballero, M. J., Mompel, D., Montero, D., Zamorano, M. J., Robaina, L., … Izquierdo, M. (2017). Disease resistance and response against Vibrio anguillarum intestinal infection in European seabass ( Dicentrarchus labrax ) fed low fish meal and fish oil diets. Fish & Shellfish Immunology, 67, 302-311. doi:10.1016/j.fsi.2017.06.022 es_ES
dc.description.references Estruch, G., Collado, M. C., Peñaranda, D. S., Tomás Vidal, A., Jover Cerdá, M., Pérez Martínez, G., & Martinez-Llorens, S. (2015). Impact of Fishmeal Replacement in Diets for Gilthead Sea Bream (Sparus aurata) on the Gastrointestinal Microbiota Determined by Pyrosequencing the 16S rRNA Gene. PLOS ONE, 10(8), e0136389. doi:10.1371/journal.pone.0136389 es_ES
dc.description.references Estruch, G., Martínez-Llorens, S., Tomás-Vidal, A., Monge-Ortiz, R., Jover-Cerdá, M., Brown, P. B., & Peñaranda, D. S. (2020). Impact of high dietary plant protein with or without marine ingredients in gut mucosa proteome of gilthead seabream (Sparus aurata, L.). Journal of Proteomics, 216, 103672. doi:10.1016/j.jprot.2020.103672 es_ES
dc.description.references Estruch, G., Collado, M. C., Monge-Ortiz, R., Tomás-Vidal, A., Jover-Cerdá, M., Peñaranda, D. S., … Martínez-Llorens, S. (2018). Long-term feeding with high plant protein based diets in gilthead seabream (Sparus aurata, L.) leads to changes in the inflammatory and immune related gene expression at intestinal level. BMC Veterinary Research, 14(1). doi:10.1186/s12917-018-1626-6 es_ES
dc.description.references Evaluation of Prebiotic and Probiotic Effects on the Intestinal Gut Microbiota and Histology of Atlantic salmon (Salmo salar L.). (2011). Journal of Aquaculture Research & Development, s1. doi:10.4172/2155-9546.s1-009 es_ES
dc.description.references Løkka, G., & Koppang, E. O. (2016). Antigen sampling in the fish intestine. Developmental & Comparative Immunology, 64, 138-149. doi:10.1016/j.dci.2016.02.014 es_ES
dc.description.references Secombes, C. J., Wang, T., Hong, S., Peddie, S., Crampe, M., Laing, K. J., … Zou, J. (2001). Cytokines and innate immunity of fish. Developmental & Comparative Immunology, 25(8-9), 713-723. doi:10.1016/s0145-305x(01)00032-5 es_ES
dc.description.references Gomez, D., Sunyer, J. O., & Salinas, I. (2013). The mucosal immune system of fish: The evolution of tolerating commensals while fighting pathogens. Fish & Shellfish Immunology, 35(6), 1729-1739. doi:10.1016/j.fsi.2013.09.032 es_ES
dc.description.references Krogdahl, Bakke-Mckellep, RØed, & Baeverfjord. (2000). Feeding Atlantic salmonSalmo salarL. soybean products: effects on disease resistance (furunculosis), and lysozyme and IgM levels in the intestinal mucosa. Aquaculture Nutrition, 6(2), 77-84. doi:10.1046/j.1365-2095.2000.00129.x es_ES
dc.description.references Salinas, I., Zhang, Y.-A., & Sunyer, J. O. (2011). Mucosal immunoglobulins and B cells of teleost fish. Developmental & Comparative Immunology, 35(12), 1346-1365. doi:10.1016/j.dci.2011.11.009 es_ES
dc.description.references Chasiotis, H., Effendi, J. C., & Kelly, S. P. (2008). Occludin expression in goldfish held in ion-poor water. Journal of Comparative Physiology B, 179(2), 145-154. doi:10.1007/s00360-008-0297-1 es_ES
dc.description.references Sánchez-Lozano, N. B., Martínez-Llorens, S., Tomás-Vidal, A., & Cerdá, M. J. (2009). Effect of high-level fish meal replacement by pea and rice concentrate protein on growth, nutrient utilization and fillet quality in gilthead seabream (Sparus aurata, L.). Aquaculture, 298(1-2), 83-89. doi:10.1016/j.aquaculture.2009.09.028 es_ES
dc.description.references Savan, R., & Sakai, M. (2006). Genomics of fish cytokines. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 1(1), 89-101. doi:10.1016/j.cbd.2005.08.005 es_ES
dc.description.references Torrecillas, S., Montero, D., Caballero, M. J., Robaina, L., Zamorano, M. J., Sweetman, J., & Izquierdo, M. (2015). Effects of dietary concentrated mannan oligosaccharides supplementation on growth, gut mucosal immune system and liver lipid metabolism of European sea bass (Dicentrarchus labrax) juveniles. Fish & Shellfish Immunology, 42(2), 508-516. doi:10.1016/j.fsi.2014.11.033 es_ES
dc.description.references Kono, T., Bird, S., Sonoda, K., Savan, R., Secombes, C. J., & Sakai, M. (2008). Characterization and expression analysis of an interleukin-7 homologue in the Japanese pufferfish, Takifugu rubripes. FEBS Journal, 275(6), 1213-1226. doi:10.1111/j.1742-4658.2008.06281.x es_ES
dc.description.references Pelegrı́n, P., Garcı́a-Castillo, J., Mulero, V., & Meseguer, J. (2001). INTERLEUKIN-1β ISOLATED FROM A MARINE FISH REVEALS UP-REGULATED EXPRESSION IN MACROPHAGES FOLLOWING ACTIVATION WITH LIPOPOLYSACCHARIDE AND LYMPHOKINES. Cytokine, 16(2), 67-72. doi:10.1006/cyto.2001.0949 es_ES
dc.description.references Chaves-Pozo, E., Pelegr�n, P., Garc�a-Castillo, J., Garc�a-Ayala, A., Mulero, V., & Meseguer, J. (2004). Acidophilic granulocytes of the marine fish gilthead seabream ( Sparus aurata L.) produce interleukin-1� following infection with Vibrio anguillarum. Cell and Tissue Research, 316(2), 189-195. doi:10.1007/s00441-004-0875-9 es_ES
dc.description.references Sepulcre, M. P., López-Castejón, G., Meseguer, J., & Mulero, V. (2007). The activation of gilthead seabream professional phagocytes by different PAMPs underlines the behavioural diversity of the main innate immune cells of bony fish. Molecular Immunology, 44(8), 2009-2016. doi:10.1016/j.molimm.2006.09.022 es_ES
dc.description.references Boltaña, S., Tridico, R., Teles, M., Mackenzie, S., & Tort, L. (2014). Lipopolysaccharides isolated from Aeromonas salmonicida and Vibrio anguillarum show quantitative but not qualitative differences in inflammatory outcome in Sparus aurata (Gilthead seabream). Fish & Shellfish Immunology, 39(2), 475-482. doi:10.1016/j.fsi.2014.06.003 es_ES
dc.description.references Newton, R., Seybold, J., Liu, S. F., & Barnes, P. J. (1997). Alternate COX-2 Transcripts Are Differentially Regulated: Implications for Post-Transcriptional Control. Biochemical and Biophysical Research Communications, 234(1), 85-89. doi:10.1006/bbrc.1997.6586 es_ES
dc.description.references Bogdan, C., Röllinghoff, M., & Diefenbach, A. (2000). Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Current Opinion in Immunology, 12(1), 64-76. doi:10.1016/s0952-7915(99)00052-7 es_ES
dc.description.references Petit, J., Embregts, C. W. E., Forlenza, M., & Wiegertjes, G. F. (2019). Evidence of Trained Immunity in a Fish: Conserved Features in Carp Macrophages. The Journal of Immunology, 203(1), 216-224. doi:10.4049/jimmunol.1900137 es_ES
dc.description.references Cerezuela, R., Meseguer, J., & Esteban, M. Á. (2013). Effects of dietary inulin, Bacillus subtilis and microalgae on intestinal gene expression in gilthead seabream (Sparus aurata L.). Fish & Shellfish Immunology, 34(3), 843-848. doi:10.1016/j.fsi.2012.12.026 es_ES
dc.description.references Chelakkot, C., Ghim, J., & Ryu, S. H. (2018). Mechanisms regulating intestinal barrier integrity and its pathological implications. Experimental & Molecular Medicine, 50(8), 1-9. doi:10.1038/s12276-018-0126-x es_ES
dc.description.references Fredenburgh, L. E., Suárez Velandia, M. M., Ma, J., Olszak, T., Cernadas, M., Englert, J. A., … Perrella, M. A. (2011). Cyclooxygenase-2 Deficiency Leads to Intestinal Barrier Dysfunction and Increased Mortality during Polymicrobial Sepsis. The Journal of Immunology, 187(10), 5255-5267. doi:10.4049/jimmunol.1101186 es_ES
dc.description.references De Francesco, M., Parisi, G., Médale, F., Lupi, P., Kaushik, S. J., & Poli, B. M. (2004). Effect of long-term feeding with a plant protein mixture based diet on growth and body/fillet quality traits of large rainbow trout (Oncorhynchus mykiss). Aquaculture, 236(1-4), 413-429. doi:10.1016/j.aquaculture.2004.01.006 es_ES
dc.description.references Lazzarotto, V., Médale, F., Larroquet, L., & Corraze, G. (2018). Long-term dietary replacement of fishmeal and fish oil in diets for rainbow trout (Oncorhynchus mykiss): Effects on growth, whole body fatty acids and intestinal and hepatic gene expression. PLOS ONE, 13(1), e0190730. doi:10.1371/journal.pone.0190730 es_ES
dc.description.references Ye, G., Dong, X., Yang, Q., Chi, S., Liu, H., Zhang, H., … Zhang, S. (2020). Dietary replacement of fish meal with peanut meal in juvenile hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂): Growth performance, immune response and intestinal microbiota. Aquaculture Reports, 17, 100327. doi:10.1016/j.aqrep.2020.100327 es_ES
dc.description.references Rojo, I., de Ilárduya, Ó. M., Estonba, A., & Pardo, M. Á. (2007). Innate immune gene expression in individual zebrafish after Listonella anguillarum inoculation. Fish & Shellfish Immunology, 23(6), 1285-1293. doi:10.1016/j.fsi.2007.07.002 es_ES
dc.description.references Doménech, A., Fernández-Garayzábal, J. ., Lawson, P., García, J. ., Cutuli, M. ., Blanco, M., … Domínguez, L. (1997). Winter disease outbreak in sea-bream (Sparus aurata) associated with Pseudomonas anguilliseptica infection. Aquaculture, 156(3-4), 317-326. doi:10.1016/s0044-8486(97)00069-0 es_ES
dc.description.references Colorni, A., Paperna, I., & Gordin, H. (1981). Bacterial infections in gilt-head sea bream Sparus aurata cultured at Elat. Aquaculture, 23(1-4), 257-267. doi:10.1016/0044-8486(81)90019-3 es_ES
dc.description.references Balebona, M. C., Andreu, M. J., Bordas, M. A., Zorrilla, I., Moriñigo, M. A., & Borrego, J. J. (1998). Pathogenicity of Vibrio alginolyticus for Cultured Gilt-Head Sea Bream ( Sparus aurata L.). Applied and Environmental Microbiology, 64(11), 4269-4275. doi:10.1128/aem.64.11.4269-4275.1998 es_ES
dc.description.references Liu, X.-F., Cao, Y., Zhang, H.-L., Chen, Y.-J., & Hu, C.-J. (2015). Complete Genome Sequence of Vibrio alginolyticus ATCC 17749 T. Genome Announcements, 3(1). doi:10.1128/genomea.01500-14 es_ES
dc.description.references Peres, H., & Oliva-Teles, A. (2009). The optimum dietary essential amino acid profile for gilthead seabream (Sparus aurata) juveniles. Aquaculture, 296(1-2), 81-86. doi:10.1016/j.aquaculture.2009.04.046 es_ES
dc.description.references Bosch, L., Alegría, A., & Farré, R. (2006). Application of the 6-aminoquinolyl-N-hydroxysccinimidyl carbamate (AQC) reagent to the RP-HPLC determination of amino acids in infant foods. Journal of Chromatography B, 831(1-2), 176-183. doi:10.1016/j.jchromb.2005.12.002 es_ES
dc.description.references Simán, C. M., Sibley, C. P., Jones, C. J. P., Turner, M. A., & Greenwood, S. L. (2001). The functional regeneration of syncytiotrophoblast in cultured explants of term placenta. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 280(4), R1116-R1122. doi:10.1152/ajpregu.2001.280.4.r1116 es_ES
dc.description.references Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3 es_ES
dc.description.references Pfaffl, M. W., Tichopad, A., Prgomet, C., & Neuvians, T. P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnology Letters, 26(6), 509-515. doi:10.1023/b:bile.0000019559.84305.47 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 14.- Conservar y utilizar de forma sostenible los océanos, mares y recursos marinos para lograr el desarrollo sostenible es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem