- -

How large is the periablational zone after radiofrequency and microwave ablation? Computer-based comparative study of two currently used clinical devices

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

How large is the periablational zone after radiofrequency and microwave ablation? Computer-based comparative study of two currently used clinical devices

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Trujillo Guillen, Macarena es_ES
dc.contributor.author Prakash, Punit es_ES
dc.contributor.author Faridi, Pegah es_ES
dc.contributor.author Radosevic, Aleksandar es_ES
dc.contributor.author Curto, Sergio es_ES
dc.contributor.author Burdio, Fernando es_ES
dc.contributor.author Berjano, Enrique es_ES
dc.date.accessioned 2021-02-16T04:32:23Z
dc.date.available 2021-02-16T04:32:23Z
dc.date.issued 2020-01-01 es_ES
dc.identifier.issn 0265-6736 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161387
dc.description.abstract [EN] Purpose To compare the size of the coagulation (CZ) and periablational (PZ) zones created with two commercially available devices in clinical use for radiofrequency (RFA) and microwave ablation (MWA), respectively. Methods Computer models were used to simulate RFA with a 3-cm Cool-tip applicator and MWA with an Amica-Gen applicator. The Arrhenius model was used to compute the damage index (omega). CZ was considered when omega > 4.6 (>99% of damaged cells). Regions with 0.6<omega < 2.1 were considered as the PZ (tissue that has undergone moderate sub-ablative hyperthermia). The ratio of PZ volume to CZ volume (PZ/CZ) was regarded as a measure of performance, since a low value implies achieving a large CZ while keeping the PZ small. Results Ten-min RFA (51 W) created smaller periablational zones than 10-min MWA (11.3 cm(3)vs. 17.2-22.9 cm(3), for 60-100 W MWA, respectively). Prolonging duration from 5 to 10 min increased the PZ in MWA more than in RFA (2.7 cm(3)for RFA vs. 8.3-11.9 cm(3)for 60-100 W MWA, respectively). PZ/CZ for RFA were relatively high (65-69%), regardless of ablation time, while those for MWA were highly dependent on the duration (increase of up to 25% between 5 and 10 min) and on the applied power (smaller values as power was raised, 102% for 60 W vs. 81% for 100 W, both for 10 min). The lowest PZ/CZ across all settings was 56%, obtained with 100 W-5 min MWA. Conclusions Although RFA creates smaller periablational zones than MWA, 100 W-5 min MWA provides the lowest PZ/CZ. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministerio de Ciencia, Innovacion y Universidades under "Programa Estatal de I+D+i Orientada a los Retos de la Sociedad", Grant No "RTI2018-094357-B-C21". Punit Prakash acknowledges support from NIH grant R01EB028848. This project has also received funding from the European Union's Horizon 2020 research and innovation programme under the Marie SklodowskaCurie grant agreement No 845645. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof International Journal of Hyperthermia es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Microwave ablation es_ES
dc.subject Moderate hyperthermic heating es_ES
dc.subject Periablational zone es_ES
dc.subject Radiofrequency ablation es_ES
dc.subject Thermal ablation es_ES
dc.subject Tumor ablation es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title How large is the periablational zone after radiofrequency and microwave ablation? Computer-based comparative study of two currently used clinical devices es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/02656736.2020.1823022 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/845645/EU/Optimizing delivery and effectiveness of chemotherapy in breast cancer patients using thermotherapy under image-guidance/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//R01EB028848/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094357-B-C21/ES/MODELADO Y EXPERIMENTACION PARA TERAPIAS ABLATIVAS INNOVADORAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Trujillo Guillen, M.; Prakash, P.; Faridi, P.; Radosevic, A.; Curto, S.; Burdio, F.; Berjano, E. (2020). How large is the periablational zone after radiofrequency and microwave ablation? Computer-based comparative study of two currently used clinical devices. International Journal of Hyperthermia. 37(1):1131-1138. https://doi.org/10.1080/02656736.2020.1823022 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/02656736.2020.1823022 es_ES
dc.description.upvformatpinicio 1131 es_ES
dc.description.upvformatpfin 1138 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 37 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 32996794 es_ES
dc.identifier.pmcid PMC7714001 es_ES
dc.relation.pasarela S\418640 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.description.references Markezana, A., Ahmed, M., Kumar, G., Zorde-Khvalevsky, E., Rozenblum, N., Galun, E., & Goldberg, S. N. (2020). Moderate hyperthermic heating encountered during thermal ablation increases tumor cell activity. International Journal of Hyperthermia, 37(1), 119-129. doi:10.1080/02656736.2020.1714084 es_ES
dc.description.references Laeseke, P. F., Lee, F. T., Sampson, L. A., van der Weide, D. W., & Brace, C. L. (2009). Microwave Ablation versus Radiofrequency Ablation in the Kidney: High-power Triaxial Antennas Create Larger Ablation Zones than Similarly Sized Internally Cooled Electrodes. Journal of Vascular and Interventional Radiology, 20(9), 1224-1229. doi:10.1016/j.jvir.2009.05.029 es_ES
dc.description.references Andreano, A., & Brace, C. L. (2012). A Comparison of Direct Heating During Radiofrequency and Microwave Ablation in Ex Vivo Liver. CardioVascular and Interventional Radiology, 36(2), 505-511. doi:10.1007/s00270-012-0405-1 es_ES
dc.description.references Shi, J., & Huang, Y. (2019). Comparison of the Ablation and Hyperechoic Zones in Different Tissues Using Microwave and Radio Frequency Ablation. Journal of Ultrasound in Medicine, 38(10), 2611-2619. doi:10.1002/jum.14958 es_ES
dc.description.references Huang, X., Nie, F., Wa, Z., Hu, H., Huang, Q., Guo, H., … Lu, M.-D. (2018). Thermal Field Distributions of Ablative Experiments Using Cyst-mimicking Phantoms. Academic Radiology, 25(5), 636-642. doi:10.1016/j.acra.2017.11.010 es_ES
dc.description.references Shibata, T., Niinobu, T., & Ogata, N. (2000). Comparison of the effects of in-vivo thermal ablation of pig liver by microwave and radiofrequency coagulation. Journal of Hepato-Biliary-Pancreatic Surgery, 7(6), 592-598. doi:10.1007/s005340070009 es_ES
dc.description.references Izzo, F., Granata, V., Grassi, R., Fusco, R., Palaia, R., Delrio, P., … Curley, S. A. (2019). Radiofrequency Ablation and Microwave Ablation in Liver Tumors: An Update. The Oncologist, 24(10). doi:10.1634/theoncologist.2018-0337 es_ES
dc.description.references Liu, W., Zheng, Y., He, W., Zou, R., Qiu, J., Shen, J., … Yuan, Y. (2018). Microwave vs radiofrequency ablation for hepatocellular carcinoma within the Milan criteria: a propensity score analysis. Alimentary Pharmacology & Therapeutics, 48(6), 671-681. doi:10.1111/apt.14929 es_ES
dc.description.references Shi, X., Pan, H., Ge, H., Li, L., … Xu, Y. (2019). Subsequent cooling-circulation after radiofrequency and microwave ablation avoids secondary indirect damage induced by residual thermal energy. Diagnostic and Interventional Radiology, 25(4), 291-297. doi:10.5152/dir.2019.17455 es_ES
dc.description.references Dewey, W. C. (1994). Arrhenius relationships from the molecule and cell to the clinic. International Journal of Hyperthermia, 10(4), 457-483. doi:10.3109/02656739409009351 es_ES
dc.description.references Chang, I. A., & Nguyen, U. D. (2004). Thermal modeling of lesion growth with radiofrequency ablation devices. BioMedical Engineering OnLine, 3(1). doi:10.1186/1475-925x-3-27 es_ES
dc.description.references Trujillo, M., Bon, J., José Rivera, M., Burdío, F., & Berjano, E. (2016). Computer modelling of an impedance-controlled pulsing protocol for RF tumour ablation with a cooled electrode. International Journal of Hyperthermia, 32(8), 931-939. doi:10.1080/02656736.2016.1190868 es_ES
dc.description.references Lopresto, V., Pinto, R., Farina, L., & Cavagnaro, M. (2017). Microwave thermal ablation: Effects of tissue properties variations on predictive models for treatment planning. Medical Engineering & Physics, 46, 63-70. doi:10.1016/j.medengphy.2017.06.008 es_ES
dc.description.references Pätz, T., Kröger, T., & Preusser, T. (2009). Simulation of Radiofrequency Ablation Including Water Evaporation. World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany, 1287-1290. doi:10.1007/978-3-642-03882-2_341 es_ES
dc.description.references Brace, C. L., Laeseke, P. F., van der Weide, D. W., & Lee, F. T. (2005). Microwave ablation with a triaxial antenna: results in ex vivo bovine liver. IEEE Transactions on Microwave Theory and Techniques, 53(1), 215-220. doi:10.1109/tmtt.2004.839308 es_ES
dc.description.references Cavagnaro, M., Amabile, C., Bernardi, P., Pisa, S., & Tosoratti, N. (2011). A Minimally Invasive Antenna for Microwave Ablation Therapies: Design, Performances, and Experimental Assessment. IEEE Transactions on Biomedical Engineering, 58(4), 949-959. doi:10.1109/tbme.2010.2099657 es_ES
dc.description.references Prakash, P. (2010). Theoretical Modeling for Hepatic Microwave Ablation. The Open Biomedical Engineering Journal, 4(1), 27-38. doi:10.2174/1874120701004010027 es_ES
dc.description.references Vogl, T., Nour-Eldin, N.-E., Hammerstingl, R., Panahi, B., & Naguib, N. (2017). Microwave Ablation (MWA): Basics, Technique and Results in Primary and Metastatic Liver Neoplasms – Review Article. RöFo - Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren, 189(11), 1055-1066. doi:10.1055/s-0043-117410 es_ES
dc.description.references Irastorza, R. M., d’ Avila, A., & Berjano, E. (2017). Thermal latency adds to lesion depth after application of high-power short-duration radiofrequency energy: Results of a computer-modeling study. Journal of Cardiovascular Electrophysiology, 29(2), 322-327. doi:10.1111/jce.13363 es_ES
dc.description.references Irastorza, R. M., Trujillo, M., & Berjano, E. (2017). How coagulation zone size is underestimated in computer modeling of RF ablation by ignoring the cooling phase just after RF power is switched off. International Journal for Numerical Methods in Biomedical Engineering, 33(11), e2869. doi:10.1002/cnm.2869 es_ES
dc.description.references Brace, C. L. (2009). Radiofrequency and Microwave Ablation of the Liver, Lung, Kidney, and Bone: What Are the Differences? Current Problems in Diagnostic Radiology, 38(3), 135-143. doi:10.1067/j.cpradiol.2007.10.001 es_ES
dc.description.references Curto, S., Taj‐Eldin, M., Fairchild, D., & Prakash, P. (2015). Microwave ablation at 915 MHz vs 2.45 GHz: A theoretical and experimental investigation. Medical Physics, 42(11), 6152-6161. doi:10.1118/1.4931959 es_ES
dc.description.references Belous, A., & Podhajsky, R. J. (2009). The effect of initial and dynamic liver conditions on RF ablation size: a study in perfused and non-perfused animal models. Energy-based Treatment of Tissue and Assessment V. doi:10.1117/12.809597 es_ES
dc.description.references Song, K. D., Lee, M. W., Park, H. J., Cha, D. I., Kang, T. W., Lee, J., … Rhim, H. (2015). Hepatic radiofrequency ablation:in vivoandex vivocomparisons of 15-gauge (G) and 17-G internally cooled electrodes. The British Journal of Radiology, 88(1050), 20140497. doi:10.1259/bjr.20140497 es_ES
dc.description.references Cha, J., Choi, D., Lee, M. W., Rhim, H., Kim, Y., Lim, H. K., … Park, C. K. (2009). Radiofrequency Ablation Zones in Ex Vivo Bovine and In Vivo Porcine Livers: Comparison of the Use of Internally Cooled Electrodes and Internally Cooled Wet Electrodes. CardioVascular and Interventional Radiology, 32(6), 1235-1240. doi:10.1007/s00270-009-9600-0 es_ES
dc.description.references Solazzo, S. A., Ahmed, M., Liu, Z., Hines-Peralta, A. U., & Goldberg, S. N. (2007). High-Power Generator for Radiofrequency Ablation: Larger Electrodes and Pulsing Algorithms in Bovine ex Vivo and Porcine in Vivo Settings. Radiology, 242(3), 743-750. doi:10.1148/radiol.2423052039 es_ES
dc.description.references Lee, J. M., Han, J. K., Chang, J. M., Chung, S. Y., Kim, S. H., Lee, J. Y., … Choi, B. I. (2006). Radiofrequency Ablation of the Porcine Liver In Vivo: Increased Coagulation with an Internally Cooled Perfusion Electrode. Academic Radiology, 13(3), 343-352. doi:10.1016/j.acra.2005.10.020 es_ES
dc.description.references Amabile, C., Ahmed, M., Solbiati, L., Meloni, M. F., Solbiati, M., Cassarino, S., … Goldberg, S. N. (2016). Microwave ablation of primary and secondary liver tumours: ex vivo, in vivo, and clinical characterisation. International Journal of Hyperthermia, 33(1), 34-42. doi:10.1080/02656736.2016.1196830 es_ES
dc.description.references Kuang, M., Lu, M. D., Xie, X. Y., Xu, H. X., Mo, L. Q., Liu, G. J., … Liang, J. Y. (2007). Liver Cancer: Increased Microwave Delivery to Ablation Zone with Cooled-Shaft Antenna—Experimental and Clinical Studies. Radiology, 242(3), 914-924. doi:10.1148/radiol.2423052028 es_ES
dc.description.references He, N., Wang, W., Ji, Z., Li, C., & Huang, B. (2010). Microwave Ablation. Academic Radiology, 17(7), 894-899. doi:10.1016/j.acra.2010.03.005 es_ES
dc.description.references Wang, Y., Sun, Y., Feng, L., Gao, Y., Ni, X., & Liang, P. (2008). Internally cooled antenna for microwave ablation: Results in ex vivo and in vivo porcine livers. European Journal of Radiology, 67(2), 357-361. doi:10.1016/j.ejrad.2007.07.015 es_ES
dc.description.references UMEHARA, H., SEKI, T., INOKUCHI, R., TAMAI, T., KAWAMURA, R., ASAYAMA, T., … OKAZAKI, K. (2011). Microwave coagulation using a perfusion microwave electrode: Preliminary experimental study using ex vivo and in vivo liver. Experimental and Therapeutic Medicine, 3(2), 214-220. doi:10.3892/etm.2011.380 es_ES
dc.description.references Chiang, J., Hynes, K. A., Bedoya, M., & Brace, C. L. (2013). A Dual-Slot Microwave Antenna for More Spherical Ablation Zones: Ex Vivo and in Vivo Validation. Radiology, 268(2), 382-389. doi:10.1148/radiol.13122128 es_ES
dc.description.references Bedoya, M., del Rio, A. M., Chiang, J., & Brace, C. L. (2014). Microwave ablation energy delivery: Influence of power pulsing on ablation results in anex vivoandin vivoliver model. Medical Physics, 41(12), 123301. doi:10.1118/1.4901312 es_ES
dc.description.references Andreano, A., Huang, Y., Meloni, M. F., Lee, F. T., & Brace, C. (2010). Microwaves create larger ablations than radiofrequency when controlled for power inex vivotissue. Medical Physics, 37(6Part1), 2967-2973. doi:10.1118/1.3432569 es_ES
dc.description.references Cornelis, F. H., Durack, J. C., Kimm, S. Y., Wimmer, T., Coleman, J. A., Solomon, S. B., & Srimathveeravalli, G. (2017). A Comparative Study of Ablation Boundary Sharpness After Percutaneous Radiofrequency, Cryo-, Microwave, and Irreversible Electroporation Ablation in Normal Swine Liver and Kidneys. CardioVascular and Interventional Radiology, 40(10), 1600-1608. doi:10.1007/s00270-017-1692-3 es_ES
dc.description.references Kim, H. J., Rhim, H., Lee, M. W., & Jeong, W. K. (2015). Measurement of Intrahepatic Pressure during Microwave Ablation in an Ex Vivo Bovine Liver Model. Gut and Liver, 9(6), 784. doi:10.5009/gnl14272 es_ES
dc.description.references Faridi, P., Keselman, P., Fallahi, H., & Prakash, P. (2020). Experimental assessment of microwave ablation computational modeling with MR thermometry. Medical Physics, 47(9), 3777-3788. doi:10.1002/mp.14318 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem