Mostrar el registro sencillo del ítem
dc.contributor.author | Gonzalez-Camejo, Josue | es_ES |
dc.contributor.author | Barat, Ramón | es_ES |
dc.contributor.author | Aguado García, Daniel | es_ES |
dc.contributor.author | FERRER, J. | es_ES |
dc.date.accessioned | 2021-02-16T04:32:34Z | |
dc.date.available | 2021-02-16T04:32:34Z | |
dc.date.issued | 2020-02-01 | es_ES |
dc.identifier.issn | 0043-1354 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161391 | |
dc.description.abstract | [EN] A membrane photobioreactor (MPBR) plant was operated continuously for 3 years to evaluate the separate effects of different factors, including: biomass and hydraulic retention times (BRT, HRT), light path (Lp), nitrification rate (NOxR), nutrient loading rates (NLR, PLR) and others. The overall effect of all these parameters which influence MPBR performance had not previously been assessed. The multivariate projection approach chosen for this study provided a good description of the collected data and facilitated their visualisation and interpretation. Forty variables used to control and assess MPBR performance were evaluated during three years of continuous outdoor operation by means of principal component analysis (PCA) and partial least squares (PLS) analysis. The PCA identified the photobioreactor (PBR) light path as the factor with the largest influence on data variability. Other important factors were: nitrogen and phosphorus recovery rates (NRR, PRR), biomass productivity (BP), optical density of 680 nm (OD680), ammonium and phosphorus effluent concentration (NH4, P), HRT, BRT, air flow rate (F-air) and nitrogen and phosphorus loading rates (NLR and PLR). The MPBR performance could be adequately estimated by a PLS model based on all the recorded variables, but this estimation worsened appreciably when only the controlled variables (Lp, F-air, HRT and BRT) were used as predictors, which underlines the importance of the non-controlled variables on MPBR performance. The microalgae cultivation process could thus only be partially controlled by the design and operating variables. A high nitrification rate was found to be inadvisable, since it showed an inverse correlation with NRR. In this respect, temperature and microalgae biomass concentration appeared to be the main factors to mitigate nitrifying bacteria activity. (C) 2019 Elsevier Ltd. All rights reserved. | es_ES |
dc.description.sponsorship | This research work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO, Projects CTM2014-54980-C2-1-R and CTM2014-54980-C2-2-R) jointly with the European Regional Development Fund, both of which are gratefully acknowledged. It was also supported by the Spanish Ministry of Education, Culture and Sport via a pre-doctoral FPU fellowship to author J. Gonzalez-Camejo (FPU14/05082). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Water Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Membrane photobioreactor | es_ES |
dc.subject | Microalgae | es_ES |
dc.subject | Nitrifying bacteria | es_ES |
dc.subject | PCA | es_ES |
dc.subject | PLS | es_ES |
dc.subject | Outdoor | es_ES |
dc.subject.classification | TECNOLOGIA DEL MEDIO AMBIENTE | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Continuous 3-year outdoor operation of a flat-panel membrane photobioreactor to treat effluent from an anaerobic membrane bioreactor | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.watres.2019.115238 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-1-R/ES/OBTENCION DE BIONUTRIENTES Y ENERGIA DEL AGUA RESIDUAL URBANA MEDIANTE CULTIVO DE MICROALGAS, TRATAMIENTOS ANAEROBIOS, CRISTALIZACION DE FOSFORO, ABSORCION DE NH3 Y COMPOSTAJE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU14%2F05082/ES/FPU14%2F05082/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-2-R/ES/DESARROLLO DE UN SISTEMA DE CONTROL Y DE SOPORTE A LA DECISION PARA LA OBTENCION DE BIONUTRIENTES Y ENERGIA EN PROCESOS DE TRATAMIENTO DE AGUAS RESIDUALES URBANAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Gonzalez-Camejo, J.; Barat, R.; Aguado García, D.; Ferrer, J. (2020). Continuous 3-year outdoor operation of a flat-panel membrane photobioreactor to treat effluent from an anaerobic membrane bioreactor. Water Research. 169:1-12. https://doi.org/10.1016/j.watres.2019.115238 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.watres.2019.115238 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 169 | es_ES |
dc.identifier.pmid | 31707179 | es_ES |
dc.relation.pasarela | S\396036 | es_ES |
dc.contributor.funder | Ministerio de Economía y Empresa | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.description.references | Ambat, I., Tang, W. Z., & Sillanpää, M. (2019). Statistical analysis of sustainable production of algal biomass from wastewater treatment process. Biomass and Bioenergy, 120, 471-478. doi:10.1016/j.biombioe.2018.10.016 | es_ES |
dc.description.references | Arbib, Z., Ruiz, J., Álvarez-Díaz, P., Garrido-Pérez, C., Barragan, J., & Perales, J. A. (2013). Long term outdoor operation of a tubular airlift pilot photobioreactor and a high rate algal pond as tertiary treatment of urban wastewater. Ecological Engineering, 52, 143-153. doi:10.1016/j.ecoleng.2012.12.089 | es_ES |
dc.description.references | Barceló-Villalobos, M., Fernández-del Olmo, P., Guzmán, J. L., Fernández-Sevilla, J. M., & Acién Fernández, F. G. (2019). Evaluation of photosynthetic light integration by microalgae in a pilot-scale raceway reactor. Bioresource Technology, 280, 404-411. doi:10.1016/j.biortech.2019.02.032 | es_ES |
dc.description.references | Cho, K., Cho, D.-H., Heo, J., Kim, U., Lee, Y. J., Choi, D.-Y., & Kim, H.-S. (2019). Nitrogen modulation under chemostat cultivation mode induces biomass and lipid production by Chlorella vulgaris and reduces antenna pigment accumulation. Bioresource Technology, 281, 118-125. doi:10.1016/j.biortech.2019.02.063 | es_ES |
dc.description.references | Galès, A., Bonnafous, A., Carré, C., Jauzein, V., Lanouguère, E., Le Floc’h, E., … Fouilland, E. (2019). Importance of ecological interactions during wastewater treatment using High Rate Algal Ponds under different temperate climates. Algal Research, 40, 101508. doi:10.1016/j.algal.2019.101508 | es_ES |
dc.description.references | Gao, F., Peng, Y.-Y., Li, C., Cui, W., Yang, Z.-H., & Zeng, G.-M. (2018). Coupled nutrient removal from secondary effluent and algal biomass production in membrane photobioreactor (MPBR): Effect of HRT and long-term operation. Chemical Engineering Journal, 335, 169-175. doi:10.1016/j.cej.2017.10.151 | es_ES |
dc.description.references | García, J., Ortiz, A., Álvarez, E., Belohlav, V., García-Galán, M. J., Díez-Montero, R., … Uggetti, E. (2018). Nutrient removal from agricultural run-off in demonstrative full scale tubular photobioreactors for microalgae growth. Ecological Engineering, 120, 513-521. doi:10.1016/j.ecoleng.2018.07.002 | es_ES |
dc.description.references | González-Camejo, J., Aparicio, S., Ruano, M. V., Borrás, L., Barat, R., & Ferrer, J. (2019). Effect of ambient temperature variations on an indigenous microalgae-nitrifying bacteria culture dominated by Chlorella. Bioresource Technology, 290, 121788. doi:10.1016/j.biortech.2019.121788 | es_ES |
dc.description.references | González-Camejo, J., Barat, R., Ruano, M. V., Seco, A., & Ferrer, J. (2018). Outdoor flat-panel membrane photobioreactor to treat the effluent of an anaerobic membrane bioreactor. Influence of operating, design, and environmental conditions. Water Science and Technology, 78(1), 195-206. doi:10.2166/wst.2018.259 | es_ES |
dc.description.references | Han, H., Zhu, S., Qiao, J., & Guo, M. (2018). Data-driven intelligent monitoring system for key variables in wastewater treatment process. Chinese Journal of Chemical Engineering, 26(10), 2093-2101. doi:10.1016/j.cjche.2018.03.027 | es_ES |
dc.description.references | Ippoliti, D., Gómez, C., del Mar Morales-Amaral, M., Pistocchi, R., Fernández-Sevilla, J. M., & Acién, F. G. (2016). Modeling of photosynthesis and respiration rate for Isochrysis galbana (T-Iso) and its influence on the production of this strain. Bioresource Technology, 203, 71-79. doi:10.1016/j.biortech.2015.12.050 | es_ES |
dc.description.references | Kubelka, B. G., Roselet, F., Pinto, W. T., & Abreu, P. C. (2018). The action of small bubbles in increasing light exposure and production of the marine microalga Nannochloropsis oceanica in massive culture systems. Algal Research, 35, 569-576. doi:10.1016/j.algal.2018.09.030 | es_ES |
dc.description.references | Lau, A. K. S., Bilad, M. R., Osman, N. B., Marbelia, L., Putra, Z. A., Nordin, N. A. H. M., … Khan, A. L. (2019). Sequencing batch membrane photobioreactor for simultaneous cultivation of aquaculture feed and polishing of real secondary effluent. Journal of Water Process Engineering, 29, 100779. doi:10.1016/j.jwpe.2019.100779 | es_ES |
dc.description.references | Lee, J.-C., Baek, K., & Kim, H.-W. (2018). Semi-continuous operation and fouling characteristics of submerged membrane photobioreactor (SMPBR) for tertiary treatment of livestock wastewater. Journal of Cleaner Production, 180, 244-251. doi:10.1016/j.jclepro.2018.01.159 | es_ES |
dc.description.references | Ling, Y., Sun, L., Wang, S., Lin, C. S. K., Sun, Z., & Zhou, Z. (2019). Cultivation of oleaginous microalga Scenedesmus obliquus coupled with wastewater treatment for enhanced biomass and lipid production. Biochemical Engineering Journal, 148, 162-169. doi:10.1016/j.bej.2019.05.012 | es_ES |
dc.description.references | Marazzi, F., Bellucci, M., Rossi, S., Fornaroli, R., Ficara, E., & Mezzanotte, V. (2019). Outdoor pilot trial integrating a sidestream microalgae process for the treatment of centrate under non optimal climate conditions. Algal Research, 39, 101430. doi:10.1016/j.algal.2019.101430 | es_ES |
dc.description.references | Marcilhac, C., Sialve, B., Pourcher, A.-M., Ziebal, C., Bernet, N., & Béline, F. (2014). Digestate color and light intensity affect nutrient removal and competition phenomena in a microalgal-bacterial ecosystem. Water Research, 64, 278-287. doi:10.1016/j.watres.2014.07.012 | es_ES |
dc.description.references | Markou, G., Dao, L. H. T., Muylaert, K., & Beardall, J. (2017). Influence of different degrees of N limitation on photosystem II performance and heterogeneity of Chlorella vulgaris. Algal Research, 26, 84-92. doi:10.1016/j.algal.2017.07.005 | es_ES |
dc.description.references | Moreno-Garcia, L., Gariépy, Y., Barnabé, S., & Raghavan, G. S. V. (2019). Effect of environmental factors on the biomass and lipid production of microalgae grown in wastewaters. Algal Research, 41, 101521. doi:10.1016/j.algal.2019.101521 | es_ES |
dc.description.references | Munz, G., Lubello, C., & Oleszkiewicz, J. A. (2011). Factors affecting the growth rates of ammonium and nitrite oxidizing bacteria. Chemosphere, 83(5), 720-725. doi:10.1016/j.chemosphere.2011.01.058 | es_ES |
dc.description.references | Nayak, M., Dhanarajan, G., Dineshkumar, R., & Sen, R. (2018). Artificial intelligence driven process optimization for cleaner production of biomass with co-valorization of wastewater and flue gas in an algal biorefinery. Journal of Cleaner Production, 201, 1092-1100. doi:10.1016/j.jclepro.2018.08.048 | es_ES |
dc.description.references | Nwoba, E. G., Parlevliet, D. A., Laird, D. W., Alameh, K., & Moheimani, N. R. (2019). Light management technologies for increasing algal photobioreactor efficiency. Algal Research, 39, 101433. doi:10.1016/j.algal.2019.101433 | es_ES |
dc.description.references | Powell, N., Shilton, A., Chisti, Y., & Pratt, S. (2009). Towards a luxury uptake process via microalgae – Defining the polyphosphate dynamics. Water Research, 43(17), 4207-4213. doi:10.1016/j.watres.2009.06.011 | es_ES |
dc.description.references | Qiu, R., Gao, S., Lopez, P. A., & Ogden, K. L. (2017). Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Research, 28, 192-199. doi:10.1016/j.algal.2017.11.004 | es_ES |
dc.description.references | Rada-Ariza, A. M., Fredy, D., Lopez-Vazquez, C. M., Van der Steen, N. P., & Lens, P. N. L. (2019). Ammonium removal mechanisms in a microalgal-bacterial sequencing-batch photobioreactor at different solids retention times. Algal Research, 39, 101468. doi:10.1016/j.algal.2019.101468 | es_ES |
dc.description.references | Robles, A., Ruano, M. V., Ribes, J., & Ferrer, J. (2013). Factors that affect the permeability of commercial hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system. Water Research, 47(3), 1277-1288. doi:10.1016/j.watres.2012.11.055 | es_ES |
dc.description.references | Seco, A., Aparicio, S., González-Camejo, J., Jiménez-Benítez, A., Mateo, O., Mora, J. F., … Ferrer, J. (2018). Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Science and Technology, 78(9), 1925-1936. doi:10.2166/wst.2018.492 | es_ES |
dc.description.references | Song, X., Luo, W., Hai, F. I., Price, W. E., Guo, W., Ngo, H. H., & Nghiem, L. D. (2018). Resource recovery from wastewater by anaerobic membrane bioreactors: Opportunities and challenges. Bioresource Technology, 270, 669-677. doi:10.1016/j.biortech.2018.09.001 | es_ES |
dc.description.references | Viruela, A., Robles, Á., Durán, F., Ruano, M. V., Barat, R., Ferrer, J., & Seco, A. (2018). Performance of an outdoor membrane photobioreactor for resource recovery from anaerobically treated sewage. Journal of Cleaner Production, 178, 665-674. doi:10.1016/j.jclepro.2017.12.223 | es_ES |
dc.description.references | Whitton, R., Le Mével, A., Pidou, M., Ometto, F., Villa, R., & Jefferson, B. (2016). Influence of microalgal N and P composition on wastewater nutrient remediation. Water Research, 91, 371-378. doi:10.1016/j.watres.2015.12.054 | es_ES |
dc.description.references | Xu, X., Gu, X., Wang, Z., Shatner, W., & Wang, Z. (2019). Progress, challenges and solutions of research on photosynthetic carbon sequestration efficiency of microalgae. Renewable and Sustainable Energy Reviews, 110, 65-82. doi:10.1016/j.rser.2019.04.050 | es_ES |
dc.subject.ods | 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos | es_ES |