- -

Continuous 3-year outdoor operation of a flat-panel membrane photobioreactor to treat effluent from an anaerobic membrane bioreactor

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Continuous 3-year outdoor operation of a flat-panel membrane photobioreactor to treat effluent from an anaerobic membrane bioreactor

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gonzalez-Camejo, Josue es_ES
dc.contributor.author Barat, Ramón es_ES
dc.contributor.author Aguado García, Daniel es_ES
dc.contributor.author FERRER, J. es_ES
dc.date.accessioned 2021-02-16T04:32:34Z
dc.date.available 2021-02-16T04:32:34Z
dc.date.issued 2020-02-01 es_ES
dc.identifier.issn 0043-1354 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161391
dc.description.abstract [EN] A membrane photobioreactor (MPBR) plant was operated continuously for 3 years to evaluate the separate effects of different factors, including: biomass and hydraulic retention times (BRT, HRT), light path (Lp), nitrification rate (NOxR), nutrient loading rates (NLR, PLR) and others. The overall effect of all these parameters which influence MPBR performance had not previously been assessed. The multivariate projection approach chosen for this study provided a good description of the collected data and facilitated their visualisation and interpretation. Forty variables used to control and assess MPBR performance were evaluated during three years of continuous outdoor operation by means of principal component analysis (PCA) and partial least squares (PLS) analysis. The PCA identified the photobioreactor (PBR) light path as the factor with the largest influence on data variability. Other important factors were: nitrogen and phosphorus recovery rates (NRR, PRR), biomass productivity (BP), optical density of 680 nm (OD680), ammonium and phosphorus effluent concentration (NH4, P), HRT, BRT, air flow rate (F-air) and nitrogen and phosphorus loading rates (NLR and PLR). The MPBR performance could be adequately estimated by a PLS model based on all the recorded variables, but this estimation worsened appreciably when only the controlled variables (Lp, F-air, HRT and BRT) were used as predictors, which underlines the importance of the non-controlled variables on MPBR performance. The microalgae cultivation process could thus only be partially controlled by the design and operating variables. A high nitrification rate was found to be inadvisable, since it showed an inverse correlation with NRR. In this respect, temperature and microalgae biomass concentration appeared to be the main factors to mitigate nitrifying bacteria activity. (C) 2019 Elsevier Ltd. All rights reserved. es_ES
dc.description.sponsorship This research work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO, Projects CTM2014-54980-C2-1-R and CTM2014-54980-C2-2-R) jointly with the European Regional Development Fund, both of which are gratefully acknowledged. It was also supported by the Spanish Ministry of Education, Culture and Sport via a pre-doctoral FPU fellowship to author J. Gonzalez-Camejo (FPU14/05082). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Water Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Membrane photobioreactor es_ES
dc.subject Microalgae es_ES
dc.subject Nitrifying bacteria es_ES
dc.subject PCA es_ES
dc.subject PLS es_ES
dc.subject Outdoor es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Continuous 3-year outdoor operation of a flat-panel membrane photobioreactor to treat effluent from an anaerobic membrane bioreactor es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.watres.2019.115238 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-1-R/ES/OBTENCION DE BIONUTRIENTES Y ENERGIA DEL AGUA RESIDUAL URBANA MEDIANTE CULTIVO DE MICROALGAS, TRATAMIENTOS ANAEROBIOS, CRISTALIZACION DE FOSFORO, ABSORCION DE NH3 Y COMPOSTAJE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU14%2F05082/ES/FPU14%2F05082/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-2-R/ES/DESARROLLO DE UN SISTEMA DE CONTROL Y DE SOPORTE A LA DECISION PARA LA OBTENCION DE BIONUTRIENTES Y ENERGIA EN PROCESOS DE TRATAMIENTO DE AGUAS RESIDUALES URBANAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Gonzalez-Camejo, J.; Barat, R.; Aguado García, D.; Ferrer, J. (2020). Continuous 3-year outdoor operation of a flat-panel membrane photobioreactor to treat effluent from an anaerobic membrane bioreactor. Water Research. 169:1-12. https://doi.org/10.1016/j.watres.2019.115238 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.watres.2019.115238 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 169 es_ES
dc.identifier.pmid 31707179 es_ES
dc.relation.pasarela S\396036 es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Ambat, I., Tang, W. Z., & Sillanpää, M. (2019). Statistical analysis of sustainable production of algal biomass from wastewater treatment process. Biomass and Bioenergy, 120, 471-478. doi:10.1016/j.biombioe.2018.10.016 es_ES
dc.description.references Arbib, Z., Ruiz, J., Álvarez-Díaz, P., Garrido-Pérez, C., Barragan, J., & Perales, J. A. (2013). Long term outdoor operation of a tubular airlift pilot photobioreactor and a high rate algal pond as tertiary treatment of urban wastewater. Ecological Engineering, 52, 143-153. doi:10.1016/j.ecoleng.2012.12.089 es_ES
dc.description.references Barceló-Villalobos, M., Fernández-del Olmo, P., Guzmán, J. L., Fernández-Sevilla, J. M., & Acién Fernández, F. G. (2019). Evaluation of photosynthetic light integration by microalgae in a pilot-scale raceway reactor. Bioresource Technology, 280, 404-411. doi:10.1016/j.biortech.2019.02.032 es_ES
dc.description.references Cho, K., Cho, D.-H., Heo, J., Kim, U., Lee, Y. J., Choi, D.-Y., & Kim, H.-S. (2019). Nitrogen modulation under chemostat cultivation mode induces biomass and lipid production by Chlorella vulgaris and reduces antenna pigment accumulation. Bioresource Technology, 281, 118-125. doi:10.1016/j.biortech.2019.02.063 es_ES
dc.description.references Galès, A., Bonnafous, A., Carré, C., Jauzein, V., Lanouguère, E., Le Floc’h, E., … Fouilland, E. (2019). Importance of ecological interactions during wastewater treatment using High Rate Algal Ponds under different temperate climates. Algal Research, 40, 101508. doi:10.1016/j.algal.2019.101508 es_ES
dc.description.references Gao, F., Peng, Y.-Y., Li, C., Cui, W., Yang, Z.-H., & Zeng, G.-M. (2018). Coupled nutrient removal from secondary effluent and algal biomass production in membrane photobioreactor (MPBR): Effect of HRT and long-term operation. Chemical Engineering Journal, 335, 169-175. doi:10.1016/j.cej.2017.10.151 es_ES
dc.description.references García, J., Ortiz, A., Álvarez, E., Belohlav, V., García-Galán, M. J., Díez-Montero, R., … Uggetti, E. (2018). Nutrient removal from agricultural run-off in demonstrative full scale tubular photobioreactors for microalgae growth. Ecological Engineering, 120, 513-521. doi:10.1016/j.ecoleng.2018.07.002 es_ES
dc.description.references González-Camejo, J., Aparicio, S., Ruano, M. V., Borrás, L., Barat, R., & Ferrer, J. (2019). Effect of ambient temperature variations on an indigenous microalgae-nitrifying bacteria culture dominated by Chlorella. Bioresource Technology, 290, 121788. doi:10.1016/j.biortech.2019.121788 es_ES
dc.description.references González-Camejo, J., Barat, R., Ruano, M. V., Seco, A., & Ferrer, J. (2018). Outdoor flat-panel membrane photobioreactor to treat the effluent of an anaerobic membrane bioreactor. Influence of operating, design, and environmental conditions. Water Science and Technology, 78(1), 195-206. doi:10.2166/wst.2018.259 es_ES
dc.description.references Han, H., Zhu, S., Qiao, J., & Guo, M. (2018). Data-driven intelligent monitoring system for key variables in wastewater treatment process. Chinese Journal of Chemical Engineering, 26(10), 2093-2101. doi:10.1016/j.cjche.2018.03.027 es_ES
dc.description.references Ippoliti, D., Gómez, C., del Mar Morales-Amaral, M., Pistocchi, R., Fernández-Sevilla, J. M., & Acién, F. G. (2016). Modeling of photosynthesis and respiration rate for Isochrysis galbana (T-Iso) and its influence on the production of this strain. Bioresource Technology, 203, 71-79. doi:10.1016/j.biortech.2015.12.050 es_ES
dc.description.references Kubelka, B. G., Roselet, F., Pinto, W. T., & Abreu, P. C. (2018). The action of small bubbles in increasing light exposure and production of the marine microalga Nannochloropsis oceanica in massive culture systems. Algal Research, 35, 569-576. doi:10.1016/j.algal.2018.09.030 es_ES
dc.description.references Lau, A. K. S., Bilad, M. R., Osman, N. B., Marbelia, L., Putra, Z. A., Nordin, N. A. H. M., … Khan, A. L. (2019). Sequencing batch membrane photobioreactor for simultaneous cultivation of aquaculture feed and polishing of real secondary effluent. Journal of Water Process Engineering, 29, 100779. doi:10.1016/j.jwpe.2019.100779 es_ES
dc.description.references Lee, J.-C., Baek, K., & Kim, H.-W. (2018). Semi-continuous operation and fouling characteristics of submerged membrane photobioreactor (SMPBR) for tertiary treatment of livestock wastewater. Journal of Cleaner Production, 180, 244-251. doi:10.1016/j.jclepro.2018.01.159 es_ES
dc.description.references Ling, Y., Sun, L., Wang, S., Lin, C. S. K., Sun, Z., & Zhou, Z. (2019). Cultivation of oleaginous microalga Scenedesmus obliquus coupled with wastewater treatment for enhanced biomass and lipid production. Biochemical Engineering Journal, 148, 162-169. doi:10.1016/j.bej.2019.05.012 es_ES
dc.description.references Marazzi, F., Bellucci, M., Rossi, S., Fornaroli, R., Ficara, E., & Mezzanotte, V. (2019). Outdoor pilot trial integrating a sidestream microalgae process for the treatment of centrate under non optimal climate conditions. Algal Research, 39, 101430. doi:10.1016/j.algal.2019.101430 es_ES
dc.description.references Marcilhac, C., Sialve, B., Pourcher, A.-M., Ziebal, C., Bernet, N., & Béline, F. (2014). Digestate color and light intensity affect nutrient removal and competition phenomena in a microalgal-bacterial ecosystem. Water Research, 64, 278-287. doi:10.1016/j.watres.2014.07.012 es_ES
dc.description.references Markou, G., Dao, L. H. T., Muylaert, K., & Beardall, J. (2017). Influence of different degrees of N limitation on photosystem II performance and heterogeneity of Chlorella vulgaris. Algal Research, 26, 84-92. doi:10.1016/j.algal.2017.07.005 es_ES
dc.description.references Moreno-Garcia, L., Gariépy, Y., Barnabé, S., & Raghavan, G. S. V. (2019). Effect of environmental factors on the biomass and lipid production of microalgae grown in wastewaters. Algal Research, 41, 101521. doi:10.1016/j.algal.2019.101521 es_ES
dc.description.references Munz, G., Lubello, C., & Oleszkiewicz, J. A. (2011). Factors affecting the growth rates of ammonium and nitrite oxidizing bacteria. Chemosphere, 83(5), 720-725. doi:10.1016/j.chemosphere.2011.01.058 es_ES
dc.description.references Nayak, M., Dhanarajan, G., Dineshkumar, R., & Sen, R. (2018). Artificial intelligence driven process optimization for cleaner production of biomass with co-valorization of wastewater and flue gas in an algal biorefinery. Journal of Cleaner Production, 201, 1092-1100. doi:10.1016/j.jclepro.2018.08.048 es_ES
dc.description.references Nwoba, E. G., Parlevliet, D. A., Laird, D. W., Alameh, K., & Moheimani, N. R. (2019). Light management technologies for increasing algal photobioreactor efficiency. Algal Research, 39, 101433. doi:10.1016/j.algal.2019.101433 es_ES
dc.description.references Powell, N., Shilton, A., Chisti, Y., & Pratt, S. (2009). Towards a luxury uptake process via microalgae – Defining the polyphosphate dynamics. Water Research, 43(17), 4207-4213. doi:10.1016/j.watres.2009.06.011 es_ES
dc.description.references Qiu, R., Gao, S., Lopez, P. A., & Ogden, K. L. (2017). Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Research, 28, 192-199. doi:10.1016/j.algal.2017.11.004 es_ES
dc.description.references Rada-Ariza, A. M., Fredy, D., Lopez-Vazquez, C. M., Van der Steen, N. P., & Lens, P. N. L. (2019). Ammonium removal mechanisms in a microalgal-bacterial sequencing-batch photobioreactor at different solids retention times. Algal Research, 39, 101468. doi:10.1016/j.algal.2019.101468 es_ES
dc.description.references Robles, A., Ruano, M. V., Ribes, J., & Ferrer, J. (2013). Factors that affect the permeability of commercial hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system. Water Research, 47(3), 1277-1288. doi:10.1016/j.watres.2012.11.055 es_ES
dc.description.references Seco, A., Aparicio, S., González-Camejo, J., Jiménez-Benítez, A., Mateo, O., Mora, J. F., … Ferrer, J. (2018). Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Science and Technology, 78(9), 1925-1936. doi:10.2166/wst.2018.492 es_ES
dc.description.references Song, X., Luo, W., Hai, F. I., Price, W. E., Guo, W., Ngo, H. H., & Nghiem, L. D. (2018). Resource recovery from wastewater by anaerobic membrane bioreactors: Opportunities and challenges. Bioresource Technology, 270, 669-677. doi:10.1016/j.biortech.2018.09.001 es_ES
dc.description.references Viruela, A., Robles, Á., Durán, F., Ruano, M. V., Barat, R., Ferrer, J., & Seco, A. (2018). Performance of an outdoor membrane photobioreactor for resource recovery from anaerobically treated sewage. Journal of Cleaner Production, 178, 665-674. doi:10.1016/j.jclepro.2017.12.223 es_ES
dc.description.references Whitton, R., Le Mével, A., Pidou, M., Ometto, F., Villa, R., & Jefferson, B. (2016). Influence of microalgal N and P composition on wastewater nutrient remediation. Water Research, 91, 371-378. doi:10.1016/j.watres.2015.12.054 es_ES
dc.description.references Xu, X., Gu, X., Wang, Z., Shatner, W., & Wang, Z. (2019). Progress, challenges and solutions of research on photosynthetic carbon sequestration efficiency of microalgae. Renewable and Sustainable Energy Reviews, 110, 65-82. doi:10.1016/j.rser.2019.04.050 es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem