- -

Differences in applied electrical power between full thorax models and limited domain models for RF cardiac ablation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Differences in applied electrical power between full thorax models and limited domain models for RF cardiac ablation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Irastorza, Ramiro M. es_ES
dc.contributor.author Gonzalez-Suarez, Ana es_ES
dc.contributor.author Pérez, Juan J es_ES
dc.contributor.author Berjano, Enrique es_ES
dc.date.accessioned 2021-02-16T04:32:39Z
dc.date.available 2021-02-16T04:32:39Z
dc.date.issued 2020-01-01 es_ES
dc.identifier.issn 0265-6736 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161394
dc.description.abstract [EN] Purpose:Most modeling studies on radiofrequency cardiac ablation (RFCA) are based on limited-domain models, which means the computational domain is restricted to a few centimeters of myocardium and blood around the active electrode. When mimicking constant power RFCA procedures (e.g., atrial fibrillation ablation) it is important to know how much power is absorbed around the active electrode and how much in the rest of the tissues before reaching the dispersive electrode. Methods:3D thorax full models were built by progressively incorporating different organs and tissues with simplified geometries (cardiac chamber, cardiac wall, subcutaneous tissue and skin, spine, lungs and aorta). Other 2D limited-domain models were also built based on fragments of myocardium and blood. The electrical problem was solved for each model to estimate the spatial power distribution around the active electrode. Results:From 79 to 82% of the power was absorbed in a 4 cm-radius sphere around the active electrode in the full thorax model at active electrode insertion depths of between 0.5 and 2.5 mm, while the impedance values ranged from 104 to 118 omega, which were consistent with those found (from 83 to 103 omega) in a 4 cm radius cylindrical limited domain model. Conclusion:The applied power in limited-domain RFCA models is approximately 80% of that applied in full thorax models, which is equivalent to the power programed in a clinical setting. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministerio de Economia, Industria y Competitividad under `Plan Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad', Grant No [RTI2018094357-B-C21], by the Universidad Nacional Arturo Jauretche Argentina 'UNAJ Investiga' [80020170100019UJ], and by `Agencia Nacional de Promocion Cientifica y Tecnologica de Argentina' [PICT2016-2303]. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof International Journal of Hyperthermia es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Cardiac ablation es_ES
dc.subject Computer model es_ES
dc.subject Limited-domain model es_ES
dc.subject RF ablation es_ES
dc.subject Thorax model es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Differences in applied electrical power between full thorax models and limited domain models for RF cardiac ablation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/02656736.2020.1777330 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANPCyT//PICT-2016-2303/AR/Desarrollo e implementación de una metodología para la evaluación in vivo de la calidad ósea./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Universidad Nacional Arturo Jauretche//80020170100019UJ/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094357-B-C21/ES/MODELADO Y EXPERIMENTACION PARA TERAPIAS ABLATIVAS INNOVADORAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Irastorza, RM.; Gonzalez-Suarez, A.; Pérez, JJ.; Berjano, E. (2020). Differences in applied electrical power between full thorax models and limited domain models for RF cardiac ablation. International Journal of Hyperthermia. 37(1):677-687. https://doi.org/10.1080/02656736.2020.1777330 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/02656736.2020.1777330 es_ES
dc.description.upvformatpinicio 677 es_ES
dc.description.upvformatpfin 687 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 37 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 32552167 es_ES
dc.relation.pasarela S\414190 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universidad Nacional Arturo Jauretche, Argentina es_ES
dc.contributor.funder Agencia Nacional de Promoción Científica y Tecnológica, Argentina es_ES
dc.description.references Jain, M. K., & Wolf, P. D. (1999). Temperature-controlled and constant-power radio-frequency ablation: what affects lesion growth? IEEE Transactions on Biomedical Engineering, 46(12), 1405-1412. doi:10.1109/10.804568 es_ES
dc.description.references Keller, M. W., Schuler, S., Wilhelms, M., Lenis, G., Seemann, G., Schmitt, C., … Luik, A. (2014). Characterization of Radiofrequency Ablation Lesion Development Based on Simulated and Measured Intracardiac Electrograms. IEEE Transactions on Biomedical Engineering, 61(9), 2467-2478. doi:10.1109/tbme.2014.2322515 es_ES
dc.description.references LAU, M., HU, B., WERNETH, R., SHERMAN, M., ORAL, H., MORADY, F., & KRYSL, P. (2010). A Theoretical and Experimental Analysis of Radiofrequency Ablation with a Multielectrode, Phased, Duty-Cycled System. Pacing and Clinical Electrophysiology, 33(9), 1089-1100. doi:10.1111/j.1540-8159.2010.02801.x es_ES
dc.description.references Tian, Z., Nan, Q., Nie, X., Dong, T., & Wang, R. (2016). The comparison of lesion outline and temperature field determined by different ways in atrial radiofrequency ablation. BioMedical Engineering OnLine, 15(S2). doi:10.1186/s12938-016-0251-5 es_ES
dc.description.references Jain, M. K., & Wolf, P. D. (2000). A Three-Dimensional Finite Element Model of Radiofrequency Ablation with Blood Flow and its Experimental Validation. Annals of Biomedical Engineering, 28(9), 1075-1084. doi:10.1114/1.1310219 es_ES
dc.description.references Panescu, D., Whayne, J. G., Fleischman, S. D., Mirotznik, M. S., Swanson, D. K., & Webster, J. G. (1995). Three-dimensional finite element analysis of current density and temperature distributions during radio-frequency ablation. IEEE Transactions on Biomedical Engineering, 42(9), 879-890. doi:10.1109/10.412649 es_ES
dc.description.references Gopalakrishnan, J. (2002). A Mathematical Model for Irrigated Epicardial Radiofrequency Ablation. Annals of Biomedical Engineering, 30(7), 884-893. doi:10.1114/1.1507845 es_ES
dc.description.references JAIN, M. K., TOMASSONI, G., RILEY, R. E., & WOLF, P. D. (1998). Effect of Skin Electrode Location on Radiofrequency Ablation Lesions: An In Vivo and a Three-Dimensional Finite Element Study. Journal of Cardiovascular Electrophysiology, 9(12), 1325-1335. doi:10.1111/j.1540-8167.1998.tb00108.x es_ES
dc.description.references Tungjitkusolmun, S., Woo, E. J., Cao, H., Tsai, J. Z., Vorperian, V. R., & Webster, J. G. (2000). Thermal—electrical finite element modelling for radio frequency cardiac ablation: Effects of changes in myocardial properties. Medical & Biological Engineering & Computing, 38(5), 562-568. doi:10.1007/bf02345754 es_ES
dc.description.references Tungjitkusolmun, S., Eung Je Woo, Hong Cao, Jang-Zern Tsai, Vorperian, V. R., & Webster, J. G. (2000). Finite element analyses of uniform current density electrodes for radio-frequency cardiac ablation. IEEE Transactions on Biomedical Engineering, 47(1), 32-40. doi:10.1109/10.817617 es_ES
dc.description.references Tungjitkusolmun, S., Vorperian, V. R., Bhavaraju, N., Cao, H., Tsai, J.-Z., & Webster, J. G. (2001). Guidelines for predicting lesion size at common endocardial locations during radio-frequency ablation. IEEE Transactions on Biomedical Engineering, 48(2), 194-201. doi:10.1109/10.909640 es_ES
dc.description.references Labonte, S. (1994). Numerical model for radio-frequency ablation of the endocardium and its experimental validation. IEEE Transactions on Biomedical Engineering, 41(2), 108-115. doi:10.1109/10.284921 es_ES
dc.description.references Gallagher, N., Fear, E. C., Byrd, I. A., & Vigmond, E. J. (2013). Contact Geometry Affects Lesion Formation in Radio-Frequency Cardiac Catheter Ablation. PLoS ONE, 8(9), e73242. doi:10.1371/journal.pone.0073242 es_ES
dc.description.references Hong Cao, Tungjitkusolmun, S., Young Bin Choy, Jang-Zern Tsai, Vorperian, V. R., & Webster, J. G. (2002). Using electrical impedance to predict catheter-endocardial contact during RF cardiac ablation. IEEE Transactions on Biomedical Engineering, 49(3), 247-253. doi:10.1109/10.983459 es_ES
dc.description.references Shahidi, A. V., & Savard, P. (1994). A finite element model for radiofrequency ablation of the myocardium. IEEE Transactions on Biomedical Engineering, 41(10), 963-968. doi:10.1109/10.324528 es_ES
dc.description.references Vassallo, F., Cunha, C., Serpa, E., Meigre, L. L., Carloni, H., Simoes, A., … Serpa, R. (2019). Comparison of high‐power short‐duration (HPSD) ablation of atrial fibrillation using a contact force‐sensing catheter and conventional technique: Initial results. Journal of Cardiovascular Electrophysiology, 30(10), 1877-1883. doi:10.1111/jce.14110 es_ES
dc.description.references Leshem, E., Zilberman, I., Tschabrunn, C. M., Barkagan, M., Contreras-Valdes, F. M., Govari, A., & Anter, E. (2018). High-Power and Short-Duration Ablation for Pulmonary Vein Isolation. JACC: Clinical Electrophysiology, 4(4), 467-479. doi:10.1016/j.jacep.2017.11.018 es_ES
dc.description.references Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., … Prior, F. (2013). The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. Journal of Digital Imaging, 26(6), 1045-1057. doi:10.1007/s10278-013-9622-7 es_ES
dc.description.references null. (2016). null. Philosophy Study, 6(9). doi:10.17265/2159-5313/2016.09.003 es_ES
dc.description.references González-Suárez, A., Gutierrez-Herrera, E., Berjano, E., Jimenez Lozano, J. N., & Franco, W. (2015). Thermal and elastic response of subcutaneous tissue with different fibrous septa architectures to RF heating: Numerical study. Lasers in Surgery and Medicine, 47(2), 183-195. doi:10.1002/lsm.22301 es_ES
dc.description.references Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.-C., Pujol, S., … Kikinis, R. (2012). 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magnetic Resonance Imaging, 30(9), 1323-1341. doi:10.1016/j.mri.2012.05.001 es_ES
dc.description.references Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11), 1309-1331. doi:10.1002/nme.2579 es_ES
dc.description.references González-Suárez, A., Pérez, J. J., & Berjano, E. (2018). Should fluid dynamics be included in computer models of RF cardiac ablation by irrigated-tip electrodes? BioMedical Engineering OnLine, 17(1). doi:10.1186/s12938-018-0475-7 es_ES
dc.description.references PÉREZ, J. J., D’AVILA, A., ARYANA, A., TRUJILLO, M., & BERJANO, E. (2016). Can Fat Deposition After Myocardial Infarction Alter the Performance of RF Catheter Ablation of Scar-Related Ventricular Tachycardia?: Results from a Computer Modeling Study. Journal of Cardiovascular Electrophysiology, 27(8), 947-952. doi:10.1111/jce.13006 es_ES
dc.description.references BHASKARAN, A., BARRY, M. A., POULIOPOULOS, J., NALLIAH, C., QIAN, P., CHIK, W., … THIAGALINGAM, A. (2016). Circuit Impedance Could Be a Crucial Factor Influencing Radiofrequency Ablation Efficacy and Safety: A Myocardial Phantom Study of the Problem and Its Correction. Journal of Cardiovascular Electrophysiology, 27(3), 351-357. doi:10.1111/jce.12893 es_ES
dc.description.references A. López Molina, J., J. Rivera, M., & Berjano, E. (2016). Electrical-thermal analytical modeling of monopolar RF thermal ablation of biological tissues: determining the circumstances under which tissue temperature reaches a steady state. Mathematical Biosciences and Engineering, 13(2), 281-301. doi:10.3934/mbe.2015003 es_ES
dc.description.references Nsah, E., Berger, R., Rosenthal, L., Hui, R., Ramza, B., Jumrussirikul, P., … Calkins, H. (1998). Relation between impedance and electrode temperature during radiofrequency catheter ablation of accessory pathways and atrioventricular nodal reentrant tachycardia. American Heart Journal, 136(5), 844-851. doi:10.1016/s0002-8703(98)70130-9 es_ES
dc.description.references Wen, Z.-C., Chen, S.-A., Chiang, C.-E., Tai, C.-T., Lee, S.-H., Chen, Y.-Z., … Chang, M.-S. (1996). Temperature and impedance monitoring during radiofrequency catheter ablation of slow AV node pathway in patients with atrioventricular node reentrant tachycardia. International Journal of Cardiology, 57(3), 257-263. doi:10.1016/s0167-5273(96)02833-1 es_ES
dc.description.references Strickberger, S. A., Hummel, J., Gallagher, M., Hasse, C., Man, K. C., Williamson, B., … Langberg, J. J. (1995). Effect of accessory pathway location on the efficiency of heating during radiofrequency catheter ablation. American Heart Journal, 129(1), 54-58. doi:10.1016/0002-8703(95)90042-x es_ES
dc.description.references Irastorza, R. M., d’ Avila, A., & Berjano, E. (2017). Thermal latency adds to lesion depth after application of high-power short-duration radiofrequency energy: Results of a computer-modeling study. Journal of Cardiovascular Electrophysiology, 29(2), 322-327. doi:10.1111/jce.13363 es_ES
dc.description.references Bourier, F., Duchateau, J., Vlachos, K., Lam, A., Martin, C. A., Takigawa, M., … Jais, P. (2018). High‐power short‐duration versus standard radiofrequency ablation: Insights on lesion metrics. Journal of Cardiovascular Electrophysiology, 29(11), 1570-1575. doi:10.1111/jce.13724 es_ES
dc.description.references Schutt, D., Berjano, E. J., & Haemmerich, D. (2009). Effect of electrode thermal conductivity in cardiac radiofrequency catheter ablation: A computational modeling study. International Journal of Hyperthermia, 25(2), 99-107. doi:10.1080/02656730802563051 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem