Mostrar el registro sencillo del ítem
dc.contributor.author | Irastorza, Ramiro M. | es_ES |
dc.contributor.author | Gonzalez-Suarez, Ana | es_ES |
dc.contributor.author | Pérez, Juan J | es_ES |
dc.contributor.author | Berjano, Enrique | es_ES |
dc.date.accessioned | 2021-02-16T04:32:39Z | |
dc.date.available | 2021-02-16T04:32:39Z | |
dc.date.issued | 2020-01-01 | es_ES |
dc.identifier.issn | 0265-6736 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161394 | |
dc.description.abstract | [EN] Purpose:Most modeling studies on radiofrequency cardiac ablation (RFCA) are based on limited-domain models, which means the computational domain is restricted to a few centimeters of myocardium and blood around the active electrode. When mimicking constant power RFCA procedures (e.g., atrial fibrillation ablation) it is important to know how much power is absorbed around the active electrode and how much in the rest of the tissues before reaching the dispersive electrode. Methods:3D thorax full models were built by progressively incorporating different organs and tissues with simplified geometries (cardiac chamber, cardiac wall, subcutaneous tissue and skin, spine, lungs and aorta). Other 2D limited-domain models were also built based on fragments of myocardium and blood. The electrical problem was solved for each model to estimate the spatial power distribution around the active electrode. Results:From 79 to 82% of the power was absorbed in a 4 cm-radius sphere around the active electrode in the full thorax model at active electrode insertion depths of between 0.5 and 2.5 mm, while the impedance values ranged from 104 to 118 omega, which were consistent with those found (from 83 to 103 omega) in a 4 cm radius cylindrical limited domain model. Conclusion:The applied power in limited-domain RFCA models is approximately 80% of that applied in full thorax models, which is equivalent to the power programed in a clinical setting. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministerio de Economia, Industria y Competitividad under `Plan Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad', Grant No [RTI2018094357-B-C21], by the Universidad Nacional Arturo Jauretche Argentina 'UNAJ Investiga' [80020170100019UJ], and by `Agencia Nacional de Promocion Cientifica y Tecnologica de Argentina' [PICT2016-2303]. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | International Journal of Hyperthermia | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Cardiac ablation | es_ES |
dc.subject | Computer model | es_ES |
dc.subject | Limited-domain model | es_ES |
dc.subject | RF ablation | es_ES |
dc.subject | Thorax model | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Differences in applied electrical power between full thorax models and limited domain models for RF cardiac ablation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/02656736.2020.1777330 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANPCyT//PICT-2016-2303/AR/Desarrollo e implementación de una metodología para la evaluación in vivo de la calidad ósea./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Universidad Nacional Arturo Jauretche//80020170100019UJ/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094357-B-C21/ES/MODELADO Y EXPERIMENTACION PARA TERAPIAS ABLATIVAS INNOVADORAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Irastorza, RM.; Gonzalez-Suarez, A.; Pérez, JJ.; Berjano, E. (2020). Differences in applied electrical power between full thorax models and limited domain models for RF cardiac ablation. International Journal of Hyperthermia. 37(1):677-687. https://doi.org/10.1080/02656736.2020.1777330 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/02656736.2020.1777330 | es_ES |
dc.description.upvformatpinicio | 677 | es_ES |
dc.description.upvformatpfin | 687 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 37 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.pmid | 32552167 | es_ES |
dc.relation.pasarela | S\414190 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Universidad Nacional Arturo Jauretche, Argentina | es_ES |
dc.contributor.funder | Agencia Nacional de Promoción Científica y Tecnológica, Argentina | es_ES |
dc.description.references | Jain, M. K., & Wolf, P. D. (1999). Temperature-controlled and constant-power radio-frequency ablation: what affects lesion growth? IEEE Transactions on Biomedical Engineering, 46(12), 1405-1412. doi:10.1109/10.804568 | es_ES |
dc.description.references | Keller, M. W., Schuler, S., Wilhelms, M., Lenis, G., Seemann, G., Schmitt, C., … Luik, A. (2014). Characterization of Radiofrequency Ablation Lesion Development Based on Simulated and Measured Intracardiac Electrograms. IEEE Transactions on Biomedical Engineering, 61(9), 2467-2478. doi:10.1109/tbme.2014.2322515 | es_ES |
dc.description.references | LAU, M., HU, B., WERNETH, R., SHERMAN, M., ORAL, H., MORADY, F., & KRYSL, P. (2010). A Theoretical and Experimental Analysis of Radiofrequency Ablation with a Multielectrode, Phased, Duty-Cycled System. Pacing and Clinical Electrophysiology, 33(9), 1089-1100. doi:10.1111/j.1540-8159.2010.02801.x | es_ES |
dc.description.references | Tian, Z., Nan, Q., Nie, X., Dong, T., & Wang, R. (2016). The comparison of lesion outline and temperature field determined by different ways in atrial radiofrequency ablation. BioMedical Engineering OnLine, 15(S2). doi:10.1186/s12938-016-0251-5 | es_ES |
dc.description.references | Jain, M. K., & Wolf, P. D. (2000). A Three-Dimensional Finite Element Model of Radiofrequency Ablation with Blood Flow and its Experimental Validation. Annals of Biomedical Engineering, 28(9), 1075-1084. doi:10.1114/1.1310219 | es_ES |
dc.description.references | Panescu, D., Whayne, J. G., Fleischman, S. D., Mirotznik, M. S., Swanson, D. K., & Webster, J. G. (1995). Three-dimensional finite element analysis of current density and temperature distributions during radio-frequency ablation. IEEE Transactions on Biomedical Engineering, 42(9), 879-890. doi:10.1109/10.412649 | es_ES |
dc.description.references | Gopalakrishnan, J. (2002). A Mathematical Model for Irrigated Epicardial Radiofrequency Ablation. Annals of Biomedical Engineering, 30(7), 884-893. doi:10.1114/1.1507845 | es_ES |
dc.description.references | JAIN, M. K., TOMASSONI, G., RILEY, R. E., & WOLF, P. D. (1998). Effect of Skin Electrode Location on Radiofrequency Ablation Lesions: An In Vivo and a Three-Dimensional Finite Element Study. Journal of Cardiovascular Electrophysiology, 9(12), 1325-1335. doi:10.1111/j.1540-8167.1998.tb00108.x | es_ES |
dc.description.references | Tungjitkusolmun, S., Woo, E. J., Cao, H., Tsai, J. Z., Vorperian, V. R., & Webster, J. G. (2000). Thermal—electrical finite element modelling for radio frequency cardiac ablation: Effects of changes in myocardial properties. Medical & Biological Engineering & Computing, 38(5), 562-568. doi:10.1007/bf02345754 | es_ES |
dc.description.references | Tungjitkusolmun, S., Eung Je Woo, Hong Cao, Jang-Zern Tsai, Vorperian, V. R., & Webster, J. G. (2000). Finite element analyses of uniform current density electrodes for radio-frequency cardiac ablation. IEEE Transactions on Biomedical Engineering, 47(1), 32-40. doi:10.1109/10.817617 | es_ES |
dc.description.references | Tungjitkusolmun, S., Vorperian, V. R., Bhavaraju, N., Cao, H., Tsai, J.-Z., & Webster, J. G. (2001). Guidelines for predicting lesion size at common endocardial locations during radio-frequency ablation. IEEE Transactions on Biomedical Engineering, 48(2), 194-201. doi:10.1109/10.909640 | es_ES |
dc.description.references | Labonte, S. (1994). Numerical model for radio-frequency ablation of the endocardium and its experimental validation. IEEE Transactions on Biomedical Engineering, 41(2), 108-115. doi:10.1109/10.284921 | es_ES |
dc.description.references | Gallagher, N., Fear, E. C., Byrd, I. A., & Vigmond, E. J. (2013). Contact Geometry Affects Lesion Formation in Radio-Frequency Cardiac Catheter Ablation. PLoS ONE, 8(9), e73242. doi:10.1371/journal.pone.0073242 | es_ES |
dc.description.references | Hong Cao, Tungjitkusolmun, S., Young Bin Choy, Jang-Zern Tsai, Vorperian, V. R., & Webster, J. G. (2002). Using electrical impedance to predict catheter-endocardial contact during RF cardiac ablation. IEEE Transactions on Biomedical Engineering, 49(3), 247-253. doi:10.1109/10.983459 | es_ES |
dc.description.references | Shahidi, A. V., & Savard, P. (1994). A finite element model for radiofrequency ablation of the myocardium. IEEE Transactions on Biomedical Engineering, 41(10), 963-968. doi:10.1109/10.324528 | es_ES |
dc.description.references | Vassallo, F., Cunha, C., Serpa, E., Meigre, L. L., Carloni, H., Simoes, A., … Serpa, R. (2019). Comparison of high‐power short‐duration (HPSD) ablation of atrial fibrillation using a contact force‐sensing catheter and conventional technique: Initial results. Journal of Cardiovascular Electrophysiology, 30(10), 1877-1883. doi:10.1111/jce.14110 | es_ES |
dc.description.references | Leshem, E., Zilberman, I., Tschabrunn, C. M., Barkagan, M., Contreras-Valdes, F. M., Govari, A., & Anter, E. (2018). High-Power and Short-Duration Ablation for Pulmonary Vein Isolation. JACC: Clinical Electrophysiology, 4(4), 467-479. doi:10.1016/j.jacep.2017.11.018 | es_ES |
dc.description.references | Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., … Prior, F. (2013). The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. Journal of Digital Imaging, 26(6), 1045-1057. doi:10.1007/s10278-013-9622-7 | es_ES |
dc.description.references | null. (2016). null. Philosophy Study, 6(9). doi:10.17265/2159-5313/2016.09.003 | es_ES |
dc.description.references | González-Suárez, A., Gutierrez-Herrera, E., Berjano, E., Jimenez Lozano, J. N., & Franco, W. (2015). Thermal and elastic response of subcutaneous tissue with different fibrous septa architectures to RF heating: Numerical study. Lasers in Surgery and Medicine, 47(2), 183-195. doi:10.1002/lsm.22301 | es_ES |
dc.description.references | Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.-C., Pujol, S., … Kikinis, R. (2012). 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magnetic Resonance Imaging, 30(9), 1323-1341. doi:10.1016/j.mri.2012.05.001 | es_ES |
dc.description.references | Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11), 1309-1331. doi:10.1002/nme.2579 | es_ES |
dc.description.references | González-Suárez, A., Pérez, J. J., & Berjano, E. (2018). Should fluid dynamics be included in computer models of RF cardiac ablation by irrigated-tip electrodes? BioMedical Engineering OnLine, 17(1). doi:10.1186/s12938-018-0475-7 | es_ES |
dc.description.references | PÉREZ, J. J., D’AVILA, A., ARYANA, A., TRUJILLO, M., & BERJANO, E. (2016). Can Fat Deposition After Myocardial Infarction Alter the Performance of RF Catheter Ablation of Scar-Related Ventricular Tachycardia?: Results from a Computer Modeling Study. Journal of Cardiovascular Electrophysiology, 27(8), 947-952. doi:10.1111/jce.13006 | es_ES |
dc.description.references | BHASKARAN, A., BARRY, M. A., POULIOPOULOS, J., NALLIAH, C., QIAN, P., CHIK, W., … THIAGALINGAM, A. (2016). Circuit Impedance Could Be a Crucial Factor Influencing Radiofrequency Ablation Efficacy and Safety: A Myocardial Phantom Study of the Problem and Its Correction. Journal of Cardiovascular Electrophysiology, 27(3), 351-357. doi:10.1111/jce.12893 | es_ES |
dc.description.references | A. López Molina, J., J. Rivera, M., & Berjano, E. (2016). Electrical-thermal analytical modeling of monopolar RF thermal ablation of biological tissues: determining the circumstances under which tissue temperature reaches a steady state. Mathematical Biosciences and Engineering, 13(2), 281-301. doi:10.3934/mbe.2015003 | es_ES |
dc.description.references | Nsah, E., Berger, R., Rosenthal, L., Hui, R., Ramza, B., Jumrussirikul, P., … Calkins, H. (1998). Relation between impedance and electrode temperature during radiofrequency catheter ablation of accessory pathways and atrioventricular nodal reentrant tachycardia. American Heart Journal, 136(5), 844-851. doi:10.1016/s0002-8703(98)70130-9 | es_ES |
dc.description.references | Wen, Z.-C., Chen, S.-A., Chiang, C.-E., Tai, C.-T., Lee, S.-H., Chen, Y.-Z., … Chang, M.-S. (1996). Temperature and impedance monitoring during radiofrequency catheter ablation of slow AV node pathway in patients with atrioventricular node reentrant tachycardia. International Journal of Cardiology, 57(3), 257-263. doi:10.1016/s0167-5273(96)02833-1 | es_ES |
dc.description.references | Strickberger, S. A., Hummel, J., Gallagher, M., Hasse, C., Man, K. C., Williamson, B., … Langberg, J. J. (1995). Effect of accessory pathway location on the efficiency of heating during radiofrequency catheter ablation. American Heart Journal, 129(1), 54-58. doi:10.1016/0002-8703(95)90042-x | es_ES |
dc.description.references | Irastorza, R. M., d’ Avila, A., & Berjano, E. (2017). Thermal latency adds to lesion depth after application of high-power short-duration radiofrequency energy: Results of a computer-modeling study. Journal of Cardiovascular Electrophysiology, 29(2), 322-327. doi:10.1111/jce.13363 | es_ES |
dc.description.references | Bourier, F., Duchateau, J., Vlachos, K., Lam, A., Martin, C. A., Takigawa, M., … Jais, P. (2018). High‐power short‐duration versus standard radiofrequency ablation: Insights on lesion metrics. Journal of Cardiovascular Electrophysiology, 29(11), 1570-1575. doi:10.1111/jce.13724 | es_ES |
dc.description.references | Schutt, D., Berjano, E. J., & Haemmerich, D. (2009). Effect of electrode thermal conductivity in cardiac radiofrequency catheter ablation: A computational modeling study. International Journal of Hyperthermia, 25(2), 99-107. doi:10.1080/02656730802563051 | es_ES |