Mostrar el registro sencillo del ítem
dc.contributor.author | ALBERO GABARDA, VICENTE | es_ES |
dc.contributor.author | Serra Mercé, Enrique | es_ES |
dc.contributor.author | Espinós Capilla, Ana | es_ES |
dc.contributor.author | Romero, Manuel L. | es_ES |
dc.contributor.author | Hospitaler Pérez, Antonio | es_ES |
dc.date.accessioned | 2021-02-17T04:31:47Z | |
dc.date.available | 2021-02-17T04:31:47Z | |
dc.date.issued | 2020-02 | es_ES |
dc.identifier.issn | 0143-974X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161596 | |
dc.description.abstract | [EN] Slim-floor beams have attracted the attention of designers in the last decades, owing to their ability for supporting intermediate loads without increasing the floor thickness. However, the behaviour of this type of beams at elevated temperatures has not been well understood yet. This paper presents the results of an experimental campaign carried out at the testing facilities of the Universitat Politecnica de Valencia, Spain, where a series of slim-floor configurations were exposed to elevated temperatures into an electrical furnace. These tests had the novelty of considering different slim-floor beam typologies, as well as alternative ways for thermal protection, such as using intumescent coating, stainless steel or lightweight concrete into different cross-section parts. The test results were used to validate a finite element thermal model which allows for a detailed analysis of the cross-section thermal behaviour and the assessment of different ways to improve the slim-floor beam fire performance. The temperature results were subsequently imported into a computer code developed by the authors where a non-linear procedure was applied to obtain the plastic bending capacity of the cross-section at elevated temperatures. These final results reveal the different thermal performance of the analysed configurations and are used as a basis for providing design recommendations for future slim-floor developments. | es_ES |
dc.description.sponsorship | The authors would like to express their sincere gratitude to the Spanish "Ministerio de Economia y Competitividad" for the help provided through the Project BIA2015-67192-R and to the European Union through the FEDER funds. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Constructional Steel Research | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Steel-concrete composite beams | es_ES |
dc.subject | Fire resistance | es_ES |
dc.subject | Slim-floor beam | es_ES |
dc.subject | Electric furnace | es_ES |
dc.subject | Thermal experiments | es_ES |
dc.subject.classification | MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | Innovative solutions for enhancing the fire resistance of slim-floor beams: Thermal experiments | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jcsr.2019.105897 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIA2015-67492-R/ES/MEJORA DEL COMPORTAMIENTO RESISTENTE FRENTE A ALTAS TEMPERATURAS DE VIGAS MIXTAS "SLIM-FLOOR" CON MATERIALES AVANZADOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.description.bibliographicCitation | Albero Gabarda, V.; Serra Mercé, E.; Espinós Capilla, A.; Romero, ML.; Hospitaler Pérez, A. (2020). Innovative solutions for enhancing the fire resistance of slim-floor beams: Thermal experiments. Journal of Constructional Steel Research. 165:1-11. https://doi.org/10.1016/j.jcsr.2019.105897 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jcsr.2019.105897 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 165 | es_ES |
dc.relation.pasarela | S\399053 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Newman, G. M. (1995). Fire resistance of slim floor beams. Journal of Constructional Steel Research, 33(1-2), 87-100. doi:10.1016/0143-974x(94)00016-b | es_ES |
dc.description.references | Kim, H. J., Kim, H. Y., & Park, S. Y. (2011). An Experimental Study on Fire Resistance of Slim Floor Beam. Applied Mechanics and Materials, 82, 752-757. doi:10.4028/www.scientific.net/amm.82.752 | es_ES |
dc.description.references | Ma, Z., & Mäkeläinen, P. (2006). Structural behaviour of composite slim floor frames in fire conditions. Journal of Constructional Steel Research, 62(12), 1282-1289. doi:10.1016/j.jcsr.2006.04.026 | es_ES |
dc.description.references | Ellobody, E. (2011). Nonlinear behaviour of unprotected composite slim floor steel beams exposed to different fire conditions. Thin-Walled Structures, 49(6), 762-771. doi:10.1016/j.tws.2011.02.002 | es_ES |
dc.description.references | Romero, M. L., Albero, V., Espinós, A., & Hospitaler, A. (2019). Fire design of slim‐floor beams. Stahlbau, 88(7), 665-674. doi:10.1002/stab.201900030 | es_ES |
dc.description.references | Zaharia, R., & Franssen, J. M. (2012). Simple equations for the calculation of the temperature within the cross-section of slim floor beams under ISO Fire. Steel & Composite structures, 13(2), 171-185. doi:10.12989/scs.2012.13.2.171 | es_ES |
dc.description.references | Tao, Z., Ghannam, M., Song, T.-Y., & Han, L.-H. (2016). Experimental and numerical investigation of concrete-filled stainless steel columns exposed to fire. Journal of Constructional Steel Research, 118, 120-134. doi:10.1016/j.jcsr.2015.11.003 | es_ES |
dc.description.references | Han, L.-H., Chen, F., Liao, F.-Y., Tao, Z., & Uy, B. (2013). Fire performance of concrete filled stainless steel tubular columns. Engineering Structures, 56, 165-181. doi:10.1016/j.engstruct.2013.05.005 | es_ES |
dc.description.references | Gardner, L., Insausti, A., Ng, K. T., & Ashraf, M. (2010). Elevated temperature material properties of stainless steel alloys. Journal of Constructional Steel Research, 66(5), 634-647. doi:10.1016/j.jcsr.2009.12.016 | es_ES |
dc.description.references | Chen, J., & Young, B. (2006). Stress–strain curves for stainless steel at elevated temperatures. Engineering Structures, 28(2), 229-239. doi:10.1016/j.engstruct.2005.07.005 | es_ES |
dc.description.references | Albero, V., Espinós, A., Serra, E., Romero, M. L., & Hospitaler, A. (2019). Numerical study on the flexural behaviour of slim-floor beams with hollow core slabs at elevated temperature. Engineering Structures, 180, 561-573. doi:10.1016/j.engstruct.2018.11.061 | es_ES |
dc.description.references | Romero, M. L., Cajot, L.-G., Conan, Y., & Braun, M. (2015). Fire design methods for slim-floor structures. Steel Construction, 8(2), 102-109. doi:10.1002/stco.201510012 | es_ES |
dc.description.references | Sharma, S., Vaddamani, V. T., & Agarwal, A. (2019). Insulation effect of the concrete slab-steel deck interface in fire conditions and its influence on the structural fire behavior of composite floor systems. Fire Safety Journal, 105, 79-91. doi:10.1016/j.firesaf.2019.02.006 | es_ES |
dc.description.references | Alam, N., Nadjai, A., Ali, F., & Nadjai, W. (2018). Structural response of unprotected and protected slim floors in fire. Journal of Constructional Steel Research, 142, 44-54. doi:10.1016/j.jcsr.2017.12.009 | es_ES |