- -

A New Optimization Algorithm Based on Search and Rescue Operations

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A New Optimization Algorithm Based on Search and Rescue Operations

Show full item record

Shabani, A.; Asgarian, B.; Gharebaghi, SA.; Salido Gregorio, MA.; Giret Boggino, AS. (2019). A New Optimization Algorithm Based on Search and Rescue Operations. Mathematical Problems in Engineering. 2019:1-23. https://doi.org/10.1155/2019/2482543

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161598

Files in this item

Item Metadata

Title: A New Optimization Algorithm Based on Search and Rescue Operations
Author: Shabani, Amir Asgarian, Behrouz Gharebaghi, Saeed Asil Salido Gregorio, Miguel Angel Giret Boggino, Adriana Susana
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Abstract:
[EN] In this paper, a new optimization algorithm called the search and rescue optimization algorithm (SAR) is proposed for solving single-objective continuous optimization problems. SAR is inspired by the explorations ...[+]
Copyrigths: Reconocimiento (by)
Source:
Mathematical Problems in Engineering. (issn: 1024-123X )
DOI: 10.1155/2019/2482543
Publisher:
Hindawi Limited
Publisher version: https://doi.org/10.1155/2019/2482543
Project ID:
info:eu-repo/grantAgreement/MINECO//TIN2015-65515-C4-1-R/ES/ARQUITECTURA PERSUASIVA PARA EL USO SOSTENIBLE E INTELIGENTE DE VEHICULOS EN FLOTAS URBANAS/
info:eu-repo/grantAgreement/MINECO//TIN2016-80856-R/ES/TECNOLOGIAS INTELIGENTES PARA LA RESOLUCION CENTRALIZADA Y DISTRIBUIDA DE PROBLEMAS DE SCHEDULING SOSTENIBLE EN PROCESOS INDUSTRIALES Y LOGISTICOS/
Thanks:
This study was partially supported by the Spanish Research Project (nos. TIN2016-80856-R and TIN2015-65515-C4-1-R).
Type: Artículo

References

Bianchi, L., Dorigo, M., Gambardella, L. M., & Gutjahr, W. J. (2008). A survey on metaheuristics for stochastic combinatorial optimization. Natural Computing, 8(2), 239-287. doi:10.1007/s11047-008-9098-4

Holland, J. H. (1992). Genetic Algorithms. Scientific American, 267(1), 66-72. doi:10.1038/scientificamerican0792-66

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1), 29-41. doi:10.1109/3477.484436 [+]
Bianchi, L., Dorigo, M., Gambardella, L. M., & Gutjahr, W. J. (2008). A survey on metaheuristics for stochastic combinatorial optimization. Natural Computing, 8(2), 239-287. doi:10.1007/s11047-008-9098-4

Holland, J. H. (1992). Genetic Algorithms. Scientific American, 267(1), 66-72. doi:10.1038/scientificamerican0792-66

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1), 29-41. doi:10.1109/3477.484436

Manjarres, D., Landa-Torres, I., Gil-Lopez, S., Del Ser, J., Bilbao, M. N., Salcedo-Sanz, S., & Geem, Z. W. (2013). A survey on applications of the harmony search algorithm. Engineering Applications of Artificial Intelligence, 26(8), 1818-1831. doi:10.1016/j.engappai.2013.05.008

Karaboga, D., Gorkemli, B., Ozturk, C., & Karaboga, N. (2012). A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 42(1), 21-57. doi:10.1007/s10462-012-9328-0

Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303-315. doi:10.1016/j.cad.2010.12.015

Zhang, C., Lin, Q., Gao, L., & Li, X. (2015). Backtracking Search Algorithm with three constraint handling methods for constrained optimization problems. Expert Systems with Applications, 42(21), 7831-7845. doi:10.1016/j.eswa.2015.05.050

Yang, X. S. (2010). Firefly algorithm, stochastic test functions and design optimisation. International Journal of Bio-Inspired Computation, 2(2), 78. doi:10.1504/ijbic.2010.032124

Punnathanam, V., & Kotecha, P. (2016). Yin-Yang-pair Optimization: A novel lightweight optimization algorithm. Engineering Applications of Artificial Intelligence, 54, 62-79. doi:10.1016/j.engappai.2016.04.004

Zhao, C., Wu, C., Chai, J., Wang, X., Yang, X., Lee, J.-M., & Kim, M. J. (2017). Decomposition-based multi-objective firefly algorithm for RFID network planning with uncertainty. Applied Soft Computing, 55, 549-564. doi:10.1016/j.asoc.2017.02.009

Zhao, C., Wu, C., Wang, X., Ling, B. W.-K., Teo, K. L., Lee, J.-M., & Jung, K.-H. (2017). Maximizing lifetime of a wireless sensor network via joint optimizing sink placement and sensor-to-sink routing. Applied Mathematical Modelling, 49, 319-337. doi:10.1016/j.apm.2017.05.001

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67-82. doi:10.1109/4235.585893

Simon, D. (2008). Biogeography-Based Optimization. IEEE Transactions on Evolutionary Computation, 12(6), 702-713. doi:10.1109/tevc.2008.919004

Garg, H. (2015). An efficient biogeography based optimization algorithm for solving reliability optimization problems. Swarm and Evolutionary Computation, 24, 1-10. doi:10.1016/j.swevo.2015.05.001

Storn, R., & Price, K. (1997). Journal of Global Optimization, 11(4), 341-359. doi:10.1023/a:1008202821328

Das, S., Mullick, S. S., & Suganthan, P. N. (2016). Recent advances in differential evolution – An updated survey. Swarm and Evolutionary Computation, 27, 1-30. doi:10.1016/j.swevo.2016.01.004

Couzin, I. D., Krause, J., Franks, N. R., & Levin, S. A. (2005). Effective leadership and decision-making in animal groups on the move. Nature, 433(7025), 513-516. doi:10.1038/nature03236

Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: A new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831-4845. doi:10.1016/j.cnsns.2012.05.010

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in Engineering Software, 69, 46-61. doi:10.1016/j.advengsoft.2013.12.007

Erol, O. K., & Eksin, I. (2006). A new optimization method: Big Bang–Big Crunch. Advances in Engineering Software, 37(2), 106-111. doi:10.1016/j.advengsoft.2005.04.005

Kaveh, A., & Mahdavi, V. R. (2014). Colliding bodies optimization: A novel meta-heuristic method. Computers & Structures, 139, 18-27. doi:10.1016/j.compstruc.2014.04.005

Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA: A Gravitational Search Algorithm. Information Sciences, 179(13), 2232-2248. doi:10.1016/j.ins.2009.03.004

Zheng, Y.-J. (2015). Water wave optimization: A new nature-inspired metaheuristic. Computers & Operations Research, 55, 1-11. doi:10.1016/j.cor.2014.10.008

Kaveh, A., & Khayatazad, M. (2012). A new meta-heuristic method: Ray Optimization. Computers & Structures, 112-113, 283-294. doi:10.1016/j.compstruc.2012.09.003

Glover, F. (1989). Tabu Search—Part I. ORSA Journal on Computing, 1(3), 190-206. doi:10.1287/ijoc.1.3.190

Chiang, H.-P., Chou, Y.-H., Chiu, C.-H., Kuo, S.-Y., & Huang, Y.-M. (2013). A quantum-inspired Tabu search algorithm for solving combinatorial optimization problems. Soft Computing, 18(9), 1771-1781. doi:10.1007/s00500-013-1203-7

Mousavirad, S. J., & Ebrahimpour-Komleh, H. (2017). Human mental search: a new population-based metaheuristic optimization algorithm. Applied Intelligence, 47(3), 850-887. doi:10.1007/s10489-017-0903-6

Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459-471. doi:10.1007/s10898-007-9149-x

Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2012). Teaching–Learning-Based Optimization: An optimization method for continuous non-linear large scale problems. Information Sciences, 183(1), 1-15. doi:10.1016/j.ins.2011.08.006

Digalakis, J. G., & Margaritis, K. G. (2001). On benchmarking functions for genetic algorithms. International Journal of Computer Mathematics, 77(4), 481-506. doi:10.1080/00207160108805080

Karaboga, D., & Akay, B. (2009). A comparative study of Artificial Bee Colony algorithm. Applied Mathematics and Computation, 214(1), 108-132. doi:10.1016/j.amc.2009.03.090

Lim, T. Y., Al-Betar, M. A., & Khader, A. T. (2015). Adaptive pair bonds in genetic algorithm: An application to real-parameter optimization. Applied Mathematics and Computation, 252, 503-519. doi:10.1016/j.amc.2014.12.030

Fleury, C., & Braibant, V. (1986). Structural optimization: A new dual method using mixed variables. International Journal for Numerical Methods in Engineering, 23(3), 409-428. doi:10.1002/nme.1620230307

Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3-18. doi:10.1016/j.swevo.2011.02.002

Gandomi, A. H., Yang, X.-S., & Alavi, A. H. (2011). Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), 17-35. doi:10.1007/s00366-011-0241-y

Wang, G. G. (2003). Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points. Journal of Mechanical Design, 125(2), 210-220. doi:10.1115/1.1561044

Cheng, M.-Y., & Prayogo, D. (2014). Symbiotic Organisms Search: A new metaheuristic optimization algorithm. Computers & Structures, 139, 98-112. doi:10.1016/j.compstruc.2014.03.007

CHICKERMANE, H., & GEA, H. C. (1996). STRUCTURAL OPTIMIZATION USING A NEW LOCAL APPROXIMATION METHOD. International Journal for Numerical Methods in Engineering, 39(5), 829-846. doi:10.1002/(sici)1097-0207(19960315)39:5<829::aid-nme884>3.0.co;2-u

Chou, J.-S., & Ngo, N.-T. (2016). Modified firefly algorithm for multidimensional optimization in structural design problems. Structural and Multidisciplinary Optimization, 55(6), 2013-2028. doi:10.1007/s00158-016-1624-x

Sonmez, M. (2011). Artificial Bee Colony algorithm for optimization of truss structures. Applied Soft Computing, 11(2), 2406-2418. doi:10.1016/j.asoc.2010.09.003

Degertekin, S. O. (2012). Improved harmony search algorithms for sizing optimization of truss structures. Computers & Structures, 92-93, 229-241. doi:10.1016/j.compstruc.2011.10.022

Degertekin, S. O., & Hayalioglu, M. S. (2013). Sizing truss structures using teaching-learning-based optimization. Computers & Structures, 119, 177-188. doi:10.1016/j.compstruc.2012.12.011

Talatahari, S., Kheirollahi, M., Farahmandpour, C., & Gandomi, A. H. (2012). A multi-stage particle swarm for optimum design of truss structures. Neural Computing and Applications, 23(5), 1297-1309. doi:10.1007/s00521-012-1072-5

Kaveh, A., Bakhshpoori, T., & Afshari, E. (2014). An efficient hybrid Particle Swarm and Swallow Swarm Optimization algorithm. Computers & Structures, 143, 40-59. doi:10.1016/j.compstruc.2014.07.012

Kaveh, A., & Bakhshpoori, T. (2016). A new metaheuristic for continuous structural optimization: water evaporation optimization. Structural and Multidisciplinary Optimization, 54(1), 23-43. doi:10.1007/s00158-015-1396-8

Jalili, S., & Hosseinzadeh, Y. (2015). A Cultural Algorithm for Optimal Design of Truss Structures. Latin American Journal of Solids and Structures, 12(9), 1721-1747. doi:10.1590/1679-78251547

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record