- -

Double Drug Delivery Using Capped Mesoporous Silica Microparticles for the Effective Treatment of Inflammatory Bowel Disease

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Double Drug Delivery Using Capped Mesoporous Silica Microparticles for the Effective Treatment of Inflammatory Bowel Disease

Show simple item record

Files in this item

dc.contributor.author Hernández Teruel, Adrián es_ES
dc.contributor.author Pérez-Esteve, Édgar es_ES
dc.contributor.author González-Álvarez, Isabel es_ES
dc.contributor.author González-Álvarez, Marta es_ES
dc.contributor.author Costero Nieto, Ana María es_ES
dc.contributor.author Ferri, Daniel es_ES
dc.contributor.author Gaviña, Pablo es_ES
dc.contributor.author Merino Sanjuán, Virginia es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.date.accessioned 2021-02-17T04:31:56Z
dc.date.available 2021-02-17T04:31:56Z
dc.date.issued 2019-06 es_ES
dc.identifier.issn 1543-8384 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161599
dc.description.abstract [EN] Silica mesoporous microparticles loaded with both rhodamine B fluorophore (S1) or hydrocortisone (S2), and capped with an olsalazine derivative, are prepared and fully characterized. Suspensions of Si and S2 in water at an acidic and a neutral pH show negligible dye/drug release, yet a notable delivery took place when the reducing agent sodium dithionite is added because of hydrolysis of an azo bond in the capping ensemble. Additionally, olsalazine fragmentation induced 5-aminosalicylic acid (5-ASA) release. In vitro digestion models show that S1 and S2 solids are suitable systems to specifically release a pharmaceutical agent in the colon. In vivo pharmacokinetic studies in rats show a preferential rhodamine B release from Si in the colon. Moreover, a model of ulcerative colitis is induced in rats by oral administration of 2,4,6-trinitrobenzenesulfonic acid (TNBS) solutions, which was also used to prove the efficacy of S2 for colitis treatment. The specific delivery of hydrocortisone and 5-ASA from S2 material to the colon tissue in injured rats markedly lowers the colon/body weight ratio and the clinical activity score. Histological studies showed a remarkable reduction in inflammation, as well as an intensive regeneration of the affected tissues. es_ES
dc.description.sponsorship We thank the Generalitat Valenciana (Project PROMETE02018/024) and the Spanish Government (Projects AGL2015-70235-C2-2-R and MAT2015-64139-C4-1-R (MINECO/FEDER)) for support. A.H.T. thanks the Spanish MEC for his FPU fellowship. The authors also thank the support of the Electron Microscopy Service at the UPV. The SCSIE (of the Universitat de Valencia) is also gratefully acknowledged for all the equipment used. NMR spectra were measured at the U26 facility of ICTS "NANBIOSIS" at the Universitat de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof Molecular Pharmaceutics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Mesoporous silica microparticles es_ES
dc.subject Gated materials es_ES
dc.subject Smart drug delivery materials es_ES
dc.subject Colon targeted release es_ES
dc.subject Inflammatory bowel disease es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Double Drug Delivery Using Capped Mesoporous Silica Microparticles for the Effective Treatment of Inflammatory Bowel Disease es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/acs.molpharmaceut.9b00041 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-70235-C2-2-R/ES/DESARROLLO DE SISTEMAS HIBRIDOS CON OPTIMIZACION DEL ANCLADO DE BIOMOLECULAS Y DISEÑADOS CON PROPIEDADES DE ENCAPSULACION Y LIBERACION CONTROLADA MEJORADAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-1-R/ES/NANOMATERIALES INTELIGENTES, SONDAS Y DISPOSITIVOS PARA EL DESARROLLO INTEGRADO DE NUEVAS HERRAMIENTAS APLICADAS AL CAMPO BIOMEDICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Hernández Teruel, A.; Pérez-Esteve, É.; González-Álvarez, I.; González-Álvarez, M.; Costero Nieto, AM.; Ferri, D.; Gaviña, P.... (2019). Double Drug Delivery Using Capped Mesoporous Silica Microparticles for the Effective Treatment of Inflammatory Bowel Disease. Molecular Pharmaceutics. 16(6):2418-2429. https://doi.org/10.1021/acs.molpharmaceut.9b00041 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/acs.molpharmaceut.9b00041 es_ES
dc.description.upvformatpinicio 2418 es_ES
dc.description.upvformatpfin 2429 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 6 es_ES
dc.identifier.pmid 30991003 es_ES
dc.relation.pasarela S\390651 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Baumgart, D. C., & Sandborn, W. J. (2012). Crohn’s disease. The Lancet, 380(9853), 1590-1605. doi:10.1016/s0140-6736(12)60026-9 es_ES
dc.description.references Pierik, M., Yang, H., Barmada, M. M., Cavanaugh, J. A., Annese, V., Brant, S. R., … Vlietinck, R. (2005). The IBD International Genetics Consortium Provides Further Evidence for Linkage to IBD4 and Shows Gene-Environment Interaction. Inflammatory Bowel Diseases, 11(1), 1-7. doi:10.1097/00054725-200501000-00001 es_ES
dc.description.references Loftus, E. V. (2004). Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology, 126(6), 1504-1517. doi:10.1053/j.gastro.2004.01.063 es_ES
dc.description.references Lupp, C., Robertson, M. L., Wickham, M. E., Sekirov, I., Champion, O. L., Gaynor, E. C., & Finlay, B. B. (2007). Host-Mediated Inflammation Disrupts the Intestinal Microbiota and Promotes the Overgrowth of Enterobacteriaceae. Cell Host & Microbe, 2(2), 119-129. doi:10.1016/j.chom.2007.06.010 es_ES
dc.description.references Takaishi, H., Matsuki, T., Nakazawa, A., Takada, T., Kado, S., Asahara, T., … Hibi, T. (2008). Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. International Journal of Medical Microbiology, 298(5-6), 463-472. doi:10.1016/j.ijmm.2007.07.016 es_ES
dc.description.references Sokol, H., Seksik, P., Furet, J. P., Firmesse, O., Nion-Larmurier, I., Beaugerie, L., … Doré, J. (2009). Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflammatory Bowel Diseases, 15(8), 1183-1189. doi:10.1002/ibd.20903 es_ES
dc.description.references Friswell, M., Campbell, B., & Rhodes, J. (2010). The Role of Bacteria in the Pathogenesis of Inflammatory Bowel Disease. Gut and Liver, 4(3), 295-306. doi:10.5009/gnl.2010.4.3.295 es_ES
dc.description.references Qiu, X., Zhang, M., Yang, X., Hong, N., & Yu, C. (2013). Faecalibacterium prausnitzii upregulates regulatory T cells and anti-inflammatory cytokines in treating TNBS-induced colitis. Journal of Crohn’s and Colitis, 7(11), e558-e568. doi:10.1016/j.crohns.2013.04.002 es_ES
dc.description.references Yu, C. G., & Huang, Q. (2013). Recent progress on the role of gut microbiota in the pathogenesis of inflammatory bowel disease. Journal of Digestive Diseases, 14(10), 513-517. doi:10.1111/1751-2980.12087 es_ES
dc.description.references Kappelman, M. D., Rifas–Shiman, S. L., Porter, C. Q., Ollendorf, D. A., Sandler, R. S., Galanko, J. A., & Finkelstein, J. A. (2008). Direct Health Care Costs of Crohn’s Disease and Ulcerative Colitis in US Children and Adults. Gastroenterology, 135(6), 1907-1913. doi:10.1053/j.gastro.2008.09.012 es_ES
dc.description.references Rocchi, A., Benchimol, E. I., Bernstein, C. N., Bitton, A., Feagan, B., Panaccione, R., … Ghosh, S. (2012). Inflammatory Bowel Disease: A Canadian Burden of Illness Review. Canadian Journal of Gastroenterology, 26(11), 811-817. doi:10.1155/2012/984575 es_ES
dc.description.references Burisch, J., Jess, T., Martinato, M., & Lakatos, P. L. (2013). The burden of inflammatory bowel disease in Europe. Journal of Crohn’s and Colitis, 7(4), 322-337. doi:10.1016/j.crohns.2013.01.010 es_ES
dc.description.references Marchetti, M., & Liberato, N. L. (2014). Biological therapies in Crohn’s disease: are they cost-effective? A critical appraisal of model-based analyses. Expert Review of Pharmacoeconomics & Outcomes Research, 14(6), 815-824. doi:10.1586/14737167.2014.957682 es_ES
dc.description.references Park, S. J. (2014). Clinical characteristics and treatment of inflammatory bowel disease: A comparison of Eastern and Western perspectives. World Journal of Gastroenterology, 20(33), 11525. doi:10.3748/wjg.v20.i33.11525 es_ES
dc.description.references Ng, S. C., Tang, W., Ching, J. Y., Wong, M., Chow, C. M., Hui, A. J., … Chan, F. K. L. (2013). Incidence and Phenotype of Inflammatory Bowel Disease Based on Results From the Asia-Pacific Crohn’s and Colitis Epidemiology Study. Gastroenterology, 145(1), 158-165.e2. doi:10.1053/j.gastro.2013.04.007 es_ES
dc.description.references Sood, A. (2003). Incidence and prevalence of ulcerative colitis in Punjab, North India. Gut, 52(11), 1587-1590. doi:10.1136/gut.52.11.1587 es_ES
dc.description.references Tozun, N., Atug, O., Imeryuz, N., Hamzaoglu, H. O., Tiftikci, A., Parlak, E., … Yurdaydin, C. (2009). Clinical Characteristics of Inflammatory Bowel Disease in Turkey. Journal of Clinical Gastroenterology, 43(1), 51-57. doi:10.1097/mcg.0b013e3181574636 es_ES
dc.description.references Victoria, C. R., Sassak, L. Y., & Nunes, H. R. de C. (2009). Incidence and prevalence rates of inflammatory bowel diseases, in midwestern of São Paulo State, Brazil. Arquivos de Gastroenterologia, 46(1), 20-25. doi:10.1590/s0004-28032009000100009 es_ES
dc.description.references Fakhoury, M., Al-Salami, H., Negrulj, R., & Mooranian, A. (2014). Inflammatory bowel disease: clinical aspects and treatments. Journal of Inflammation Research, 113. doi:10.2147/jir.s65979 es_ES
dc.description.references Mowat, C., Cole, A., Windsor, A., Ahmad, T., Arnott, I., … Driscoll, R. (2011). Guidelines for the management of inflammatory bowel disease in adults. Gut, 60(5), 571-607. doi:10.1136/gut.2010.224154 es_ES
dc.description.references Di Sario, A., Bendia, E., Schiadà, L., Sassaroli, P., & Benedetti, A. (2016). Biologic Drugs in Crohn’;s Disease and Ulcerative Colitis: Safety Profile. Current Drug Safety, 11(1), 55-61. doi:10.2174/157488631101160212171757 es_ES
dc.description.references Collnot, E.-M., Ali, H., & Lehr, C.-M. (2012). Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. Journal of Controlled Release, 161(2), 235-246. doi:10.1016/j.jconrel.2012.01.028 es_ES
dc.description.references Lamprecht, A., Rodero Torres, H., Schäfer, U., & Lehr, C.-M. (2000). Biodegradable microparticles as a two-drug controlled release formulation: a potential treatment of inflammatory bowel disease. Journal of Controlled Release, 69(3), 445-454. doi:10.1016/s0168-3659(00)00331-x es_ES
dc.description.references Teruel, A., Coll, C., Costero, A., Ferri, D., Parra, M., Gaviña, P., … Sancenón, F. (2018). Functional Magnetic Mesoporous Silica Microparticles Capped with an Azo-Derivative: A Promising Colon Drug Delivery Device. Molecules, 23(2), 375. doi:10.3390/molecules23020375 es_ES
dc.description.references Teruel, A. H., Pérez-Esteve, É., González-Álvarez, I., González-Álvarez, M., Costero, A. M., Ferri, D., … Sancenón, F. (2018). Smart gated magnetic silica mesoporous particles for targeted colon drug delivery: New approaches for inflammatory bowel diseases treatment. Journal of Controlled Release, 281, 58-69. doi:10.1016/j.jconrel.2018.05.007 es_ES
dc.description.references Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053 es_ES
dc.description.references Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456 es_ES
dc.description.references Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(1). doi:10.1038/ncomms15511 es_ES
dc.description.references De la Torre, C., Domínguez-Berrocal, L., Murguía, J. R., Marcos, M. D., Martínez-Máñez, R., Bravo, J., & Sancenón, F. (2018). ϵ -Polylysine-Capped Mesoporous Silica Nanoparticles as Carrier of the C 9h Peptide to Induce Apoptosis in Cancer Cells. Chemistry - A European Journal, 24(8), 1890-1897. doi:10.1002/chem.201704161 es_ES
dc.description.references Oroval, M., Díez, P., Aznar, E., Coll, C., Marcos, M. D., Sancenón, F., … Martínez-Máñez, R. (2016). Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery. Chemistry - A European Journal, 23(6), 1353-1360. doi:10.1002/chem.201604104 es_ES
dc.description.references De la Torre, C., Casanova, I., Acosta, G., Coll, C., Moreno, M. J., Albericio, F., … Martínez-Máñez, R. (2014). Gated Mesoporous Silica Nanoparticles Using a Double-Role Circular Peptide for the Controlled and Target-Preferential Release of Doxorubicin in CXCR4-Expresing Lymphoma Cells. Advanced Functional Materials, 25(5), 687-695. doi:10.1002/adfm.201403822 es_ES
dc.description.references Giménez, C., Climent, E., Aznar, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., … Rurack, K. (2014). Towards Chemical Communication between Gated Nanoparticles. Angewandte Chemie International Edition, n/a-n/a. doi:10.1002/anie.201405580 es_ES
dc.description.references García-Fernández, A., García-Laínez, G., Ferrándiz, M. L., Aznar, E., Sancenón, F., Alcaraz, M. J., … Orzáez, M. (2017). Targeting inflammasome by the inhibition of caspase-1 activity using capped mesoporous silica nanoparticles. Journal of Controlled Release, 248, 60-70. doi:10.1016/j.jconrel.2017.01.002 es_ES
dc.description.references Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348j es_ES
dc.description.references Cabrera, S., El Haskouri, J., Guillem, C., Latorre, J., Beltrán-Porter, A., Beltrán-Porter, D., … Amorós *, P. (2000). Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sciences, 2(4), 405-420. doi:10.1016/s1293-2558(00)00152-7 es_ES
dc.description.references Lunn, G. (2005). HPLC Methods for Recently Approved Pharmaceuticals. doi:10.1002/0471711683 es_ES
dc.description.references Navarro, C., González-Álvarez, I., González-Álvarez, M., Manku, M., Merino, V., Casabó, V. G., & Bermejo, M. (2011). Influence of polyunsaturated fatty acids on Cortisol transport through MDCK and MDCK-MDR1 cells as blood–brain barrier in vitro model. European Journal of Pharmaceutical Sciences, 42(3), 290-299. doi:10.1016/j.ejps.2010.12.005 es_ES
dc.description.references Mura, C., Nácher, A., Merino, V., Merino-Sanjuan, M., Carda, C., Ruiz, A., … Diez-Sales, O. (2011). N-Succinyl-chitosan systems for 5-aminosalicylic acid colon delivery: In vivo study with TNBS-induced colitis model in rats. International Journal of Pharmaceutics. doi:10.1016/j.ijpharm.2011.06.025 es_ES
dc.description.references Sandborn, W. J., & Hanauer, S. B. (2002). The pharmacokinetic profiles of oral mesalazine formulations and mesalazine pro-drugs used in the management of ulcerative colitis. Alimentary Pharmacology & Therapeutics, 17(1), 29-42. doi:10.1046/j.1365-2036.2003.01408.x es_ES
dc.description.references Mladenovska, K., Raicki, R. S., Janevik, E. I., Ristoski, T., Pavlova, M. J., Kavrakovski, Z., … Goracinova, K. (2007). Colon-specific delivery of 5-aminosalicylic acid from chitosan-Ca-alginate microparticles. International Journal of Pharmaceutics, 342(1-2), 124-136. doi:10.1016/j.ijpharm.2007.05.028 es_ES
dc.description.references Oomen, A. G., Rompelberg, C. J. M., Bruil, M. A., Dobbe, C. J. G., Pereboom, D. P. K. H., & Sips, A. J. A. M. (2003). Development of an In Vitro Digestion Model for Estimating the Bioaccessibility of Soil Contaminants. Archives of Environmental Contamination and Toxicology, 44(3), 281-287. doi:10.1007/s00244-002-1278-0 es_ES
dc.description.references Versantvoort, C. H. M., Oomen, A. G., Van de Kamp, E., Rompelberg, C. J. M., & Sips, A. J. A. M. (2005). Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. Food and Chemical Toxicology, 43(1), 31-40. doi:10.1016/j.fct.2004.08.007 es_ES
dc.description.references Tozaki, H., Fujita, T., Komoike, J., Kim, S.-I., Terashima, H., Muranishi, S., … Yamamoto, A. (1999). Colon-specific Delivery of Budesonide with Azopolymer-coated Pellets: Therapeutic Effects of Budesonide with a Novel Dosage Form against 2,4,6-Trinitrobenzenesulphonic Acid-induced Colitis in Rats. Journal of Pharmacy and Pharmacology, 51(3), 257-261. doi:10.1211/0022357991772420 es_ES
dc.description.references Tozaki, H., Odoriba, T., Okada, N., Fujita, T., Terabe, A., Suzuki, T., … Yamamoto, A. (2002). Chitosan capsules for colon-specific drug delivery: enhanced localization of 5-aminosalicylic acid in the large intestine accelerates healing of TNBS-induced colitis in rats. Journal of Controlled Release, 82(1), 51-61. doi:10.1016/s0168-3659(02)00084-6 es_ES
dc.description.references Yoo, J.-W., Naeem, M., Cao, J., Choi, M., Kim, W., Moon, H. R., … Jung, Y. (2015). Enhanced therapeutic efficacy of budesonide in experimental colitis with enzyme/pH dual-sensitive polymeric nanoparticles. International Journal of Nanomedicine, 4565. doi:10.2147/ijn.s87816 es_ES


This item appears in the following Collection(s)

Show simple item record