Mostrar el registro sencillo del ítem
dc.contributor.author | Hernández Teruel, Adrián | es_ES |
dc.contributor.author | Pérez-Esteve, Édgar | es_ES |
dc.contributor.author | González-Álvarez, Isabel | es_ES |
dc.contributor.author | González-Álvarez, Marta | es_ES |
dc.contributor.author | Costero Nieto, Ana María | es_ES |
dc.contributor.author | Ferri, Daniel | es_ES |
dc.contributor.author | Gaviña, Pablo | es_ES |
dc.contributor.author | Merino Sanjuán, Virginia | es_ES |
dc.contributor.author | Martínez-Máñez, Ramón | es_ES |
dc.contributor.author | Sancenón Galarza, Félix | es_ES |
dc.date.accessioned | 2021-02-17T04:31:56Z | |
dc.date.available | 2021-02-17T04:31:56Z | |
dc.date.issued | 2019-06 | es_ES |
dc.identifier.issn | 1543-8384 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161599 | |
dc.description.abstract | [EN] Silica mesoporous microparticles loaded with both rhodamine B fluorophore (S1) or hydrocortisone (S2), and capped with an olsalazine derivative, are prepared and fully characterized. Suspensions of Si and S2 in water at an acidic and a neutral pH show negligible dye/drug release, yet a notable delivery took place when the reducing agent sodium dithionite is added because of hydrolysis of an azo bond in the capping ensemble. Additionally, olsalazine fragmentation induced 5-aminosalicylic acid (5-ASA) release. In vitro digestion models show that S1 and S2 solids are suitable systems to specifically release a pharmaceutical agent in the colon. In vivo pharmacokinetic studies in rats show a preferential rhodamine B release from Si in the colon. Moreover, a model of ulcerative colitis is induced in rats by oral administration of 2,4,6-trinitrobenzenesulfonic acid (TNBS) solutions, which was also used to prove the efficacy of S2 for colitis treatment. The specific delivery of hydrocortisone and 5-ASA from S2 material to the colon tissue in injured rats markedly lowers the colon/body weight ratio and the clinical activity score. Histological studies showed a remarkable reduction in inflammation, as well as an intensive regeneration of the affected tissues. | es_ES |
dc.description.sponsorship | We thank the Generalitat Valenciana (Project PROMETE02018/024) and the Spanish Government (Projects AGL2015-70235-C2-2-R and MAT2015-64139-C4-1-R (MINECO/FEDER)) for support. A.H.T. thanks the Spanish MEC for his FPU fellowship. The authors also thank the support of the Electron Microscopy Service at the UPV. The SCSIE (of the Universitat de Valencia) is also gratefully acknowledged for all the equipment used. NMR spectra were measured at the U26 facility of ICTS "NANBIOSIS" at the Universitat de Valencia. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Chemical Society | es_ES |
dc.relation.ispartof | Molecular Pharmaceutics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Mesoporous silica microparticles | es_ES |
dc.subject | Gated materials | es_ES |
dc.subject | Smart drug delivery materials | es_ES |
dc.subject | Colon targeted release | es_ES |
dc.subject | Inflammatory bowel disease | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Double Drug Delivery Using Capped Mesoporous Silica Microparticles for the Effective Treatment of Inflammatory Bowel Disease | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1021/acs.molpharmaceut.9b00041 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2015-70235-C2-2-R/ES/DESARROLLO DE SISTEMAS HIBRIDOS CON OPTIMIZACION DEL ANCLADO DE BIOMOLECULAS Y DISEÑADOS CON PROPIEDADES DE ENCAPSULACION Y LIBERACION CONTROLADA MEJORADAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-1-R/ES/NANOMATERIALES INTELIGENTES, SONDAS Y DISPOSITIVOS PARA EL DESARROLLO INTEGRADO DE NUEVAS HERRAMIENTAS APLICADAS AL CAMPO BIOMEDICO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Hernández Teruel, A.; Pérez-Esteve, É.; González-Álvarez, I.; González-Álvarez, M.; Costero Nieto, AM.; Ferri, D.; Gaviña, P.... (2019). Double Drug Delivery Using Capped Mesoporous Silica Microparticles for the Effective Treatment of Inflammatory Bowel Disease. Molecular Pharmaceutics. 16(6):2418-2429. https://doi.org/10.1021/acs.molpharmaceut.9b00041 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1021/acs.molpharmaceut.9b00041 | es_ES |
dc.description.upvformatpinicio | 2418 | es_ES |
dc.description.upvformatpfin | 2429 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 6 | es_ES |
dc.identifier.pmid | 30991003 | es_ES |
dc.relation.pasarela | S\390651 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Baumgart, D. C., & Sandborn, W. J. (2012). Crohn’s disease. The Lancet, 380(9853), 1590-1605. doi:10.1016/s0140-6736(12)60026-9 | es_ES |
dc.description.references | Pierik, M., Yang, H., Barmada, M. M., Cavanaugh, J. A., Annese, V., Brant, S. R., … Vlietinck, R. (2005). The IBD International Genetics Consortium Provides Further Evidence for Linkage to IBD4 and Shows Gene-Environment Interaction. Inflammatory Bowel Diseases, 11(1), 1-7. doi:10.1097/00054725-200501000-00001 | es_ES |
dc.description.references | Loftus, E. V. (2004). Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology, 126(6), 1504-1517. doi:10.1053/j.gastro.2004.01.063 | es_ES |
dc.description.references | Lupp, C., Robertson, M. L., Wickham, M. E., Sekirov, I., Champion, O. L., Gaynor, E. C., & Finlay, B. B. (2007). Host-Mediated Inflammation Disrupts the Intestinal Microbiota and Promotes the Overgrowth of Enterobacteriaceae. Cell Host & Microbe, 2(2), 119-129. doi:10.1016/j.chom.2007.06.010 | es_ES |
dc.description.references | Takaishi, H., Matsuki, T., Nakazawa, A., Takada, T., Kado, S., Asahara, T., … Hibi, T. (2008). Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. International Journal of Medical Microbiology, 298(5-6), 463-472. doi:10.1016/j.ijmm.2007.07.016 | es_ES |
dc.description.references | Sokol, H., Seksik, P., Furet, J. P., Firmesse, O., Nion-Larmurier, I., Beaugerie, L., … Doré, J. (2009). Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflammatory Bowel Diseases, 15(8), 1183-1189. doi:10.1002/ibd.20903 | es_ES |
dc.description.references | Friswell, M., Campbell, B., & Rhodes, J. (2010). The Role of Bacteria in the Pathogenesis of Inflammatory Bowel Disease. Gut and Liver, 4(3), 295-306. doi:10.5009/gnl.2010.4.3.295 | es_ES |
dc.description.references | Qiu, X., Zhang, M., Yang, X., Hong, N., & Yu, C. (2013). Faecalibacterium prausnitzii upregulates regulatory T cells and anti-inflammatory cytokines in treating TNBS-induced colitis. Journal of Crohn’s and Colitis, 7(11), e558-e568. doi:10.1016/j.crohns.2013.04.002 | es_ES |
dc.description.references | Yu, C. G., & Huang, Q. (2013). Recent progress on the role of gut microbiota in the pathogenesis of inflammatory bowel disease. Journal of Digestive Diseases, 14(10), 513-517. doi:10.1111/1751-2980.12087 | es_ES |
dc.description.references | Kappelman, M. D., Rifas–Shiman, S. L., Porter, C. Q., Ollendorf, D. A., Sandler, R. S., Galanko, J. A., & Finkelstein, J. A. (2008). Direct Health Care Costs of Crohn’s Disease and Ulcerative Colitis in US Children and Adults. Gastroenterology, 135(6), 1907-1913. doi:10.1053/j.gastro.2008.09.012 | es_ES |
dc.description.references | Rocchi, A., Benchimol, E. I., Bernstein, C. N., Bitton, A., Feagan, B., Panaccione, R., … Ghosh, S. (2012). Inflammatory Bowel Disease: A Canadian Burden of Illness Review. Canadian Journal of Gastroenterology, 26(11), 811-817. doi:10.1155/2012/984575 | es_ES |
dc.description.references | Burisch, J., Jess, T., Martinato, M., & Lakatos, P. L. (2013). The burden of inflammatory bowel disease in Europe. Journal of Crohn’s and Colitis, 7(4), 322-337. doi:10.1016/j.crohns.2013.01.010 | es_ES |
dc.description.references | Marchetti, M., & Liberato, N. L. (2014). Biological therapies in Crohn’s disease: are they cost-effective? A critical appraisal of model-based analyses. Expert Review of Pharmacoeconomics & Outcomes Research, 14(6), 815-824. doi:10.1586/14737167.2014.957682 | es_ES |
dc.description.references | Park, S. J. (2014). Clinical characteristics and treatment of inflammatory bowel disease: A comparison of Eastern and Western perspectives. World Journal of Gastroenterology, 20(33), 11525. doi:10.3748/wjg.v20.i33.11525 | es_ES |
dc.description.references | Ng, S. C., Tang, W., Ching, J. Y., Wong, M., Chow, C. M., Hui, A. J., … Chan, F. K. L. (2013). Incidence and Phenotype of Inflammatory Bowel Disease Based on Results From the Asia-Pacific Crohn’s and Colitis Epidemiology Study. Gastroenterology, 145(1), 158-165.e2. doi:10.1053/j.gastro.2013.04.007 | es_ES |
dc.description.references | Sood, A. (2003). Incidence and prevalence of ulcerative colitis in Punjab, North India. Gut, 52(11), 1587-1590. doi:10.1136/gut.52.11.1587 | es_ES |
dc.description.references | Tozun, N., Atug, O., Imeryuz, N., Hamzaoglu, H. O., Tiftikci, A., Parlak, E., … Yurdaydin, C. (2009). Clinical Characteristics of Inflammatory Bowel Disease in Turkey. Journal of Clinical Gastroenterology, 43(1), 51-57. doi:10.1097/mcg.0b013e3181574636 | es_ES |
dc.description.references | Victoria, C. R., Sassak, L. Y., & Nunes, H. R. de C. (2009). Incidence and prevalence rates of inflammatory bowel diseases, in midwestern of São Paulo State, Brazil. Arquivos de Gastroenterologia, 46(1), 20-25. doi:10.1590/s0004-28032009000100009 | es_ES |
dc.description.references | Fakhoury, M., Al-Salami, H., Negrulj, R., & Mooranian, A. (2014). Inflammatory bowel disease: clinical aspects and treatments. Journal of Inflammation Research, 113. doi:10.2147/jir.s65979 | es_ES |
dc.description.references | Mowat, C., Cole, A., Windsor, A., Ahmad, T., Arnott, I., … Driscoll, R. (2011). Guidelines for the management of inflammatory bowel disease in adults. Gut, 60(5), 571-607. doi:10.1136/gut.2010.224154 | es_ES |
dc.description.references | Di Sario, A., Bendia, E., Schiadà, L., Sassaroli, P., & Benedetti, A. (2016). Biologic Drugs in Crohn’;s Disease and Ulcerative Colitis: Safety Profile. Current Drug Safety, 11(1), 55-61. doi:10.2174/157488631101160212171757 | es_ES |
dc.description.references | Collnot, E.-M., Ali, H., & Lehr, C.-M. (2012). Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. Journal of Controlled Release, 161(2), 235-246. doi:10.1016/j.jconrel.2012.01.028 | es_ES |
dc.description.references | Lamprecht, A., Rodero Torres, H., Schäfer, U., & Lehr, C.-M. (2000). Biodegradable microparticles as a two-drug controlled release formulation: a potential treatment of inflammatory bowel disease. Journal of Controlled Release, 69(3), 445-454. doi:10.1016/s0168-3659(00)00331-x | es_ES |
dc.description.references | Teruel, A., Coll, C., Costero, A., Ferri, D., Parra, M., Gaviña, P., … Sancenón, F. (2018). Functional Magnetic Mesoporous Silica Microparticles Capped with an Azo-Derivative: A Promising Colon Drug Delivery Device. Molecules, 23(2), 375. doi:10.3390/molecules23020375 | es_ES |
dc.description.references | Teruel, A. H., Pérez-Esteve, É., González-Álvarez, I., González-Álvarez, M., Costero, A. M., Ferri, D., … Sancenón, F. (2018). Smart gated magnetic silica mesoporous particles for targeted colon drug delivery: New approaches for inflammatory bowel diseases treatment. Journal of Controlled Release, 281, 58-69. doi:10.1016/j.jconrel.2018.05.007 | es_ES |
dc.description.references | Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053 | es_ES |
dc.description.references | Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456 | es_ES |
dc.description.references | Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(1). doi:10.1038/ncomms15511 | es_ES |
dc.description.references | De la Torre, C., Domínguez-Berrocal, L., Murguía, J. R., Marcos, M. D., Martínez-Máñez, R., Bravo, J., & Sancenón, F. (2018). ϵ -Polylysine-Capped Mesoporous Silica Nanoparticles as Carrier of the C 9h Peptide to Induce Apoptosis in Cancer Cells. Chemistry - A European Journal, 24(8), 1890-1897. doi:10.1002/chem.201704161 | es_ES |
dc.description.references | Oroval, M., Díez, P., Aznar, E., Coll, C., Marcos, M. D., Sancenón, F., … Martínez-Máñez, R. (2016). Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery. Chemistry - A European Journal, 23(6), 1353-1360. doi:10.1002/chem.201604104 | es_ES |
dc.description.references | De la Torre, C., Casanova, I., Acosta, G., Coll, C., Moreno, M. J., Albericio, F., … Martínez-Máñez, R. (2014). Gated Mesoporous Silica Nanoparticles Using a Double-Role Circular Peptide for the Controlled and Target-Preferential Release of Doxorubicin in CXCR4-Expresing Lymphoma Cells. Advanced Functional Materials, 25(5), 687-695. doi:10.1002/adfm.201403822 | es_ES |
dc.description.references | Giménez, C., Climent, E., Aznar, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., … Rurack, K. (2014). Towards Chemical Communication between Gated Nanoparticles. Angewandte Chemie International Edition, n/a-n/a. doi:10.1002/anie.201405580 | es_ES |
dc.description.references | García-Fernández, A., García-Laínez, G., Ferrándiz, M. L., Aznar, E., Sancenón, F., Alcaraz, M. J., … Orzáez, M. (2017). Targeting inflammasome by the inhibition of caspase-1 activity using capped mesoporous silica nanoparticles. Journal of Controlled Release, 248, 60-70. doi:10.1016/j.jconrel.2017.01.002 | es_ES |
dc.description.references | Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348j | es_ES |
dc.description.references | Cabrera, S., El Haskouri, J., Guillem, C., Latorre, J., Beltrán-Porter, A., Beltrán-Porter, D., … Amorós *, P. (2000). Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sciences, 2(4), 405-420. doi:10.1016/s1293-2558(00)00152-7 | es_ES |
dc.description.references | Lunn, G. (2005). HPLC Methods for Recently Approved Pharmaceuticals. doi:10.1002/0471711683 | es_ES |
dc.description.references | Navarro, C., González-Álvarez, I., González-Álvarez, M., Manku, M., Merino, V., Casabó, V. G., & Bermejo, M. (2011). Influence of polyunsaturated fatty acids on Cortisol transport through MDCK and MDCK-MDR1 cells as blood–brain barrier in vitro model. European Journal of Pharmaceutical Sciences, 42(3), 290-299. doi:10.1016/j.ejps.2010.12.005 | es_ES |
dc.description.references | Mura, C., Nácher, A., Merino, V., Merino-Sanjuan, M., Carda, C., Ruiz, A., … Diez-Sales, O. (2011). N-Succinyl-chitosan systems for 5-aminosalicylic acid colon delivery: In vivo study with TNBS-induced colitis model in rats. International Journal of Pharmaceutics. doi:10.1016/j.ijpharm.2011.06.025 | es_ES |
dc.description.references | Sandborn, W. J., & Hanauer, S. B. (2002). The pharmacokinetic profiles of oral mesalazine formulations and mesalazine pro-drugs used in the management of ulcerative colitis. Alimentary Pharmacology & Therapeutics, 17(1), 29-42. doi:10.1046/j.1365-2036.2003.01408.x | es_ES |
dc.description.references | Mladenovska, K., Raicki, R. S., Janevik, E. I., Ristoski, T., Pavlova, M. J., Kavrakovski, Z., … Goracinova, K. (2007). Colon-specific delivery of 5-aminosalicylic acid from chitosan-Ca-alginate microparticles. International Journal of Pharmaceutics, 342(1-2), 124-136. doi:10.1016/j.ijpharm.2007.05.028 | es_ES |
dc.description.references | Oomen, A. G., Rompelberg, C. J. M., Bruil, M. A., Dobbe, C. J. G., Pereboom, D. P. K. H., & Sips, A. J. A. M. (2003). Development of an In Vitro Digestion Model for Estimating the Bioaccessibility of Soil Contaminants. Archives of Environmental Contamination and Toxicology, 44(3), 281-287. doi:10.1007/s00244-002-1278-0 | es_ES |
dc.description.references | Versantvoort, C. H. M., Oomen, A. G., Van de Kamp, E., Rompelberg, C. J. M., & Sips, A. J. A. M. (2005). Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. Food and Chemical Toxicology, 43(1), 31-40. doi:10.1016/j.fct.2004.08.007 | es_ES |
dc.description.references | Tozaki, H., Fujita, T., Komoike, J., Kim, S.-I., Terashima, H., Muranishi, S., … Yamamoto, A. (1999). Colon-specific Delivery of Budesonide with Azopolymer-coated Pellets: Therapeutic Effects of Budesonide with a Novel Dosage Form against 2,4,6-Trinitrobenzenesulphonic Acid-induced Colitis in Rats. Journal of Pharmacy and Pharmacology, 51(3), 257-261. doi:10.1211/0022357991772420 | es_ES |
dc.description.references | Tozaki, H., Odoriba, T., Okada, N., Fujita, T., Terabe, A., Suzuki, T., … Yamamoto, A. (2002). Chitosan capsules for colon-specific drug delivery: enhanced localization of 5-aminosalicylic acid in the large intestine accelerates healing of TNBS-induced colitis in rats. Journal of Controlled Release, 82(1), 51-61. doi:10.1016/s0168-3659(02)00084-6 | es_ES |
dc.description.references | Yoo, J.-W., Naeem, M., Cao, J., Choi, M., Kim, W., Moon, H. R., … Jung, Y. (2015). Enhanced therapeutic efficacy of budesonide in experimental colitis with enzyme/pH dual-sensitive polymeric nanoparticles. International Journal of Nanomedicine, 4565. doi:10.2147/ijn.s87816 | es_ES |