- -

PRX2 and PRX25, peroxidases regulated by COG1, are involved in seed longevity in Arabidopsis

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

PRX2 and PRX25, peroxidases regulated by COG1, are involved in seed longevity in Arabidopsis

Show full item record

Renard, J.; Martínez-Almonacid, I.; Sonntag, A.; Molina, I.; Moya-Cuevas, J.; Bissoli, G.; Muñoz-Bertomeu, J.... (2020). PRX2 and PRX25, peroxidases regulated by COG1, are involved in seed longevity in Arabidopsis. Plant Cell & Environment. 43(2):315-326. https://doi.org/10.1111/pce.13656

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161601

Files in this item

Item Metadata

Title: PRX2 and PRX25, peroxidases regulated by COG1, are involved in seed longevity in Arabidopsis
Author: Renard, Joan Martínez-Almonacid, Irene Sonntag, Annika Molina, Isabel Moya-Cuevas, Jose Bissoli, Gaetano Muñoz-Bertomeu, Jesús Faus, Isabel Niñoles Rodenes, Regina Shigeto, Jun Tsutsumi, Yuji Gadea Vacas, José Serrano Salom, Ramón Bueso Rodenas, Eduardo
UPV Unit: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Abstract:
[EN] Permeability is a crucial trait that affects seed longevity and is regulated by different polymers including proanthocyanidins, suberin, cutin and lignin located in the seed coat. By testing mutants in suberin transport ...[+]
Subjects: Accelerating aging , RNA-seq , Sudan , TEM , Tetrazolium salts
Copyrigths: Reserva de todos los derechos
Source:
Plant Cell & Environment. (issn: 0140-7791 )
DOI: 10.1111/pce.13656
Publisher:
Blackwell Publishing
Publisher version: https://doi.org/10.1111/pce.13656
Project ID:
info:eu-repo/grantAgreement/MINECO//BIO2014-52621-R/ES/REGULACION DEL DESARROLLO DE LA CUBIERTA DE LAS SEMILLAS COMO HERRAMIENTA PARA AUMENTAR SU LONGEVIDAD/
info:eu-repo/grantAgreement/MINECO//BES-2015-072096/ES/BES-2015-072096/
info:eu-repo/grantAgreement/MINECO//88702466
Type: Artículo

References

Almagro, L., Gómez Ros, L. V., Belchi-Navarro, S., Bru, R., Ros Barceló, A., & Pedreño, M. A. (2008). Class III peroxidases in plant defence reactions. Journal of Experimental Botany, 60(2), 377-390. doi:10.1093/jxb/ern277

Bailly, C., El-Maarouf-Bouteau, H., & Corbineau, F. (2008). From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. Comptes Rendus Biologies, 331(10), 806-814. doi:10.1016/j.crvi.2008.07.022

Beisson, F., Li, Y., Bonaventure, G., Pollard, M., & Ohlrogge, J. B. (2007). The Acyltransferase GPAT5 Is Required for the Synthesis of Suberin in Seed Coat and Root of Arabidopsis. The Plant Cell, 19(1), 351-368. doi:10.1105/tpc.106.048033 [+]
Almagro, L., Gómez Ros, L. V., Belchi-Navarro, S., Bru, R., Ros Barceló, A., & Pedreño, M. A. (2008). Class III peroxidases in plant defence reactions. Journal of Experimental Botany, 60(2), 377-390. doi:10.1093/jxb/ern277

Bailly, C., El-Maarouf-Bouteau, H., & Corbineau, F. (2008). From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. Comptes Rendus Biologies, 331(10), 806-814. doi:10.1016/j.crvi.2008.07.022

Beisson, F., Li, Y., Bonaventure, G., Pollard, M., & Ohlrogge, J. B. (2007). The Acyltransferase GPAT5 Is Required for the Synthesis of Suberin in Seed Coat and Root of Arabidopsis. The Plant Cell, 19(1), 351-368. doi:10.1105/tpc.106.048033

Belmonte, M. F., Kirkbride, R. C., Stone, S. L., Pelletier, J. M., Bui, A. Q., Yeung, E. C., … Harada, J. J. (2013). Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed. Proceedings of the National Academy of Sciences, 110(5), E435-E444. doi:10.1073/pnas.1222061110

Bernards, M. A. (2002). Demystifying suberin. Canadian Journal of Botany, 80(3), 227-240. doi:10.1139/b02-017

Bernards, M. A., Summerhurst, D. K., & Razem, F. A. (2004). Oxidases, peroxidases and hydrogen peroxide: The suberin connection. Phytochemistry Reviews, 3(1-2), 113-126. doi:10.1023/b:phyt.0000047810.10706.46

Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. doi:10.1093/bioinformatics/btu170

Bueso, E., Muñoz-Bertomeu, J., Campos, F., Brunaud, V., Martínez, L., Sayas, E., … Serrano, R. (2013). ARABIDOPSIS THALIANA HOMEOBOX25 Uncovers a Role for Gibberellins in Seed Longevity. Plant Physiology, 164(2), 999-1010. doi:10.1104/pp.113.232223

Châtelain, E., Satour, P., Laugier, E., Ly Vu, B., Payet, N., Rey, P., & Montrichard, F. (2013). Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity. Proceedings of the National Academy of Sciences, 110(9), 3633-3638. doi:10.1073/pnas.1220589110

Clerkx, E. J. M., Blankestijn-De Vries, H., Ruys, G. J., Groot, S. P. C., & Koornneef, M. (2004). Genetic differences in seed longevity of various Arabidopsis mutants. Physiologia Plantarum, 121(3), 448-461. doi:10.1111/j.0031-9317.2004.00339.x

Cosio, C., & Dunand, C. (2009). Specific functions of individual class III peroxidase genes. Journal of Experimental Botany, 60(2), 391-408. doi:10.1093/jxb/ern318

Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., & Scheible, W.-R. (2005). Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiology, 139(1), 5-17. doi:10.1104/pp.105.063743

Debeaujon, I., Léon-Kloosterziel, K. M., & Koornneef, M. (2000). Influence of the Testa on Seed Dormancy, Germination, and Longevity in Arabidopsis. Plant Physiology, 122(2), 403-414. doi:10.1104/pp.122.2.403

Duroux, L., & Welinder, K. G. (2003). The Peroxidase Gene Family in Plants: A Phylogenetic Overview. Journal of Molecular Evolution, 57(4), 397-407. doi:10.1007/s00239-003-2489-3

Fedi, F., O’Neill, C. M., Menard, G., Trick, M., Dechirico, S., Corbineau, F., … Penfield, S. (2017). Awake1, an ABC-Type Transporter, Reveals an Essential Role for Suberin in the Control of Seed Dormancy. Plant Physiology, 174(1), 276-283. doi:10.1104/pp.16.01556

Francoz, E., Ranocha, P., Nguyen-Kim, H., Jamet, E., Burlat, V., & Dunand, C. (2015). Roles of cell wall peroxidases in plant development. Phytochemistry, 112, 15-21. doi:10.1016/j.phytochem.2014.07.020

Franke, R., Briesen, I., Wojciechowski, T., Faust, A., Yephremov, A., Nawrath, C., & Schreiber, L. (2005). Apoplastic polyesters in Arabidopsis surface tissues – A typical suberin and a particular cutin. Phytochemistry, 66(22), 2643-2658. doi:10.1016/j.phytochem.2005.09.027

Franke, R., & Schreiber, L. (2007). Suberin — a biopolyester forming apoplastic plant interfaces. Current Opinion in Plant Biology, 10(3), 252-259. doi:10.1016/j.pbi.2007.04.004

GoffL TrapnellC&KelleyD(2014)CummeRbund: Analysis exploration manipulation and visualization of Cufflinks high‐throughput sequencing data. R package version 2.22.0.

Gou, M., Hou, G., Yang, H., Zhang, X., Cai, Y., Kai, G., & Liu, C.-J. (2016). The MYB107 Transcription Factor Positively Regulates Suberin Biosynthesis. Plant Physiology, 173(2), 1045-1058. doi:10.1104/pp.16.01614

Graça, J. (2015). Suberin: the biopolyester at the frontier of plants. Frontiers in Chemistry, 3. doi:10.3389/fchem.2015.00062

Haughn, G., & Chaudhury, A. (2005). Genetic analysis of seed coat development in Arabidopsis. Trends in Plant Science, 10(10), 472-477. doi:10.1016/j.tplants.2005.08.005

Herrero, J., Fernández-Pérez, F., Yebra, T., Novo-Uzal, E., Pomar, F., Pedreño, M. Á., … Zapata, J. M. (2013). Bioinformatic and functional characterization of the basic peroxidase 72 from Arabidopsis thaliana involved in lignin biosynthesis. Planta, 237(6), 1599-1612. doi:10.1007/s00425-013-1865-5

Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12(4), 357-360. doi:10.1038/nmeth.3317

Kosma, D. K., Murmu, J., Razeq, F. M., Santos, P., Bourgault, R., Molina, I., & Rowland, O. (2014). At MYB 41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types. The Plant Journal, 80(2), 216-229. doi:10.1111/tpj.12624

Kunieda, T., Shimada, T., Kondo, M., Nishimura, M., Nishitani, K., & Hara-Nishimura, I. (2013). Spatiotemporal Secretion of PEROXIDASE36 Is Required for Seed Coat Mucilage Extrusion in Arabidopsis  . The Plant Cell, 25(4), 1355-1367. doi:10.1105/tpc.113.110072

Lee, Y., Rubio, M. C., Alassimone, J., & Geldner, N. (2013). A Mechanism for Localized Lignin Deposition in the Endodermis. Cell, 153(2), 402-412. doi:10.1016/j.cell.2013.02.045

Liang, M., Davis, E., Gardner, D., Cai, X., & Wu, Y. (2006). Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis. Planta, 224(5), 1185-1196. doi:10.1007/s00425-006-0300-6

Li-Beisson, Y., Shorrosh, B., Beisson, F., Andersson, M. X., Arondel, V., Bates, P. D., … Ohlrogge, J. (2013). Acyl-Lipid Metabolism. The Arabidopsis Book, 11, e0161. doi:10.1199/tab.0161

Mandel, T., Candela, H., Landau, U., Asis, L., Zilinger, E., Carles, C. C., & Williams, L. E. (2016). Differential regulation of meristem size, morphology and organization by the ERECTA, CLAVATA and class III HD-ZIP pathways. Development. doi:10.1242/dev.129973

Milne, I., Stephen, G., Bayer, M., Cock, P. J. A., Pritchard, L., Cardle, L., … Marshall, D. (2012). Using Tablet for visual exploration of second-generation sequencing data. Briefings in Bioinformatics, 14(2), 193-202. doi:10.1093/bib/bbs012

Molina, I., Bonaventure, G., Ohlrogge, J., & Pollard, M. (2006). The lipid polyester composition of Arabidopsis thaliana and Brassica napus seeds. Phytochemistry, 67(23), 2597-2610. doi:10.1016/j.phytochem.2006.09.011

Molina, I., Ohlrogge, J. B., & Pollard, M. (2007). Deposition and localization of lipid polyester in developing seeds of Brassica napus and Arabidopsis thaliana. The Plant Journal, 53(3), 437-449. doi:10.1111/j.1365-313x.2007.03348.x

Moreira‐Vilar F C. Siqueira‐Soares R deC Finger‐Teixeira A. Oliveira de D. M. Ferro AP Rocha daG J. Ferrarese M deLL Santos dosW. D. Ferrarese‐Filho O(2014).The Acetyl Bromide Method Is Faster Simpler and Presents Best Recovery of Lignin in Different Herbaceous Tissues than Klason and Thioglycolic Acid Methods. PLoS ONE 9:e110000.https://doi.org/10.1371/journal.pone.0110000

Oñate-Sánchez, L., & Vicente-Carbajosa, J. (2008). DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques. BMC Research Notes, 1(1), 93. doi:10.1186/1756-0500-1-93

Østergaard, L., Teilum, K., Mirza, O., Mattsson, O., Petersen, M., Welinder, K. G., … Henriksen, A. (2000). Plant Molecular Biology, 44(2), 231-243. doi:10.1023/a:1006442618860

Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9), 45e-45. doi:10.1093/nar/29.9.e45

Passardi, F., Longet, D., Penel, C., & Dunand, C. (2004). The class III peroxidase multigenic family in rice and its evolution in land plants☆☆☆. Phytochemistry, 65(13), 1879-1893. doi:10.1016/j.phytochem.2004.06.023

Pedreira, J., Herrera, M. T., Zarra, I., & Revilla, G. (2010). The overexpression of AtPrx37, an apoplastic peroxidase, reduces growth in Arabidopsis. Physiologia Plantarum, 141(2), 177-187. doi:10.1111/j.1399-3054.2010.01427.x

Pollard, M., Beisson, F., Li, Y., & Ohlrogge, J. B. (2008). Building lipid barriers: biosynthesis of cutin and suberin. Trends in Plant Science, 13(5), 236-246. doi:10.1016/j.tplants.2008.03.003

Quiroga, M., Guerrero, C., Botella, M. A., Barceló, A., Amaya, I., Medina, M. I., … Valpuesta, V. (2000). A Tomato Peroxidase Involved in the Synthesis of Lignin and Suberin. Plant Physiology, 122(4), 1119-1128. doi:10.1104/pp.122.4.1119

Rains, M. K., Gardiyehewa de Silva, N. D., & Molina, I. (2017). Reconstructing the suberin pathway in poplar by chemical and transcriptomic analysis of bark tissues. Tree Physiology, 38(3), 340-361. doi:10.1093/treephys/tpx060

Russell, W. R., Burkitt, M. J., Scobbie, L., & Chesson, A. (2005). EPR Investigation into the Effects of Substrate Structure on Peroxidase-Catalyzed Phenylpropanoid Oxidation. Biomacromolecules, 7(1), 268-273. doi:10.1021/bm050636o

Sano, N., Rajjou, L., North, H. M., Debeaujon, I., Marion-Poll, A., & Seo, M. (2015). Staying Alive: Molecular Aspects of Seed Longevity. Plant and Cell Physiology, 57(4), 660-674. doi:10.1093/pcp/pcv186

Shigeto, J., Itoh, Y., Hirao, S., Ohira, K., Fujita, K., & Tsutsumi, Y. (2015). Simultaneously disrupting AtPrx2 , AtPrx25 and AtPrx71 alters lignin content and structure in Arabidopsis stem. Journal of Integrative Plant Biology, 57(4), 349-356. doi:10.1111/jipb.12334

Shigeto, J., Kiyonaga, Y., Fujita, K., Kondo, R., & Tsutsumi, Y. (2013). Putative Cationic Cell-Wall-Bound Peroxidase Homologues in Arabidopsis, AtPrx2, AtPrx25, and AtPrx71, Are Involved in Lignification. Journal of Agricultural and Food Chemistry, 61(16), 3781-3788. doi:10.1021/jf400426g

Soliday, C. L., Dean, B. B., & Kolattukudy, P. E. (1978). Suberization: Inhibition by Washing and Stimulation by Abscisic Acid in Potato Disks and Tissue Culture. Plant Physiology, 61(2), 170-174. doi:10.1104/pp.61.2.170

Tobimatsu, Y., Chen, F., Nakashima, J., Escamilla-Trevino, L. L., Jackson, L., Dixon, R. A., & Ralph, J. (2013). Coexistence but Independent Biosynthesis of Catechyl and Guaiacyl/Syringyl Lignin Polymers in Seed Coats. The Plant Cell, 25(7), 2587-2600. doi:10.1105/tpc.113.113142

Trapnell, C., Hendrickson, D. G., Sauvageau, M., Goff, L., Rinn, J. L., & Pachter, L. (2012). Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature Biotechnology, 31(1), 46-53. doi:10.1038/nbt.2450

Vishwanath, S. J., Delude, C., Domergue, F., & Rowland, O. (2014). Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier. Plant Cell Reports, 34(4), 573-586. doi:10.1007/s00299-014-1727-z

Vishwanath, S. J., Kosma, D. K., Pulsifer, I. P., Scandola, S., Pascal, S., Joubès, J., … Domergue, F. (2013). Suberin-Associated Fatty Alcohols in Arabidopsis: Distributions in Roots and Contributions to Seed Coat Barrier Properties  . Plant Physiology, 163(3), 1118-1132. doi:10.1104/pp.113.224410

Vogt, T. (2010). Phenylpropanoid Biosynthesis. Molecular Plant, 3(1), 2-20. doi:10.1093/mp/ssp106

Wang, G.-L., Que, F., Xu, Z.-S., Wang, F., & Xiong, A.-S. (2016). Exogenous gibberellin enhances secondary xylem development and lignification in carrot taproot. Protoplasma, 254(2), 839-848. doi:10.1007/s00709-016-0995-6

Yadav, V., Molina, I., Ranathunge, K., Castillo, I. Q., Rothstein, S. J., & Reed, J. W. (2014). ABCG Transporters Are Required for Suberin and Pollen Wall Extracellular Barriers in Arabidopsis    . The Plant Cell, 26(9), 3569-3588. doi:10.1105/tpc.114.129049

Zieslin, N., & Ben-Zaken, R. (1992). Effects of applied auxin, gibberellin and cytokinin on the activity of peroxidases in the peduncles of rose flowers. Plant Growth Regulation, 11(1), 53-57. doi:10.1007/bf00024433

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record