Mostrar el registro sencillo del ítem
dc.contributor.author | Arrieta, Marina P. | es_ES |
dc.date.accessioned | 2021-02-17T07:54:39Z | |
dc.date.available | 2021-02-17T07:54:39Z | |
dc.date.issued | 2021-01-26 | |
dc.identifier.uri | http://hdl.handle.net/10251/161616 | |
dc.description.abstract | [EN] Poly(lactic acid) (PLA) has gained considerable attention as an interesting biobased and biodegradable polymer for film for food packaging applications, due to its many advantages such as biobased nature, high transparency and inherent biodegradable/compostable character. With the dual objective to improve PLA processing performance and to obtain flexible materials, plasticizer are use as strategy for extending PLA applications as compostable film for food packaging applications. Several plasticizers (i.e.: citrate esters, polyethylene glycol (PEG), oligomeric lactic acid (OLA), etc.) as well as essential oils and maleinized and/or epoxidized seed oils are widely used for flexible PLA film production. This article reviews the most relevant compostable PLA-plasticized flexible film formulations with an emphasis on plasticizer effect on the compostability rate of PLA polymeric matrix with the aim to get information of the possibility to use plasticized PLAbased formulatios as compostable films for sustainable industrial packaging production. | es_ES |
dc.description.sponsorship | M.P. Arrieta wants to thank Prof. Juan López-Martínez from Instituto de Tecnología de Materiales, Universitat Politècnica de València (EPSA-UPV, Spain) and Prof. José María Kenny from Civil and Environmental Engineering Department, Materials Engineering Centre, University of Perugia (UdR INSTM,, Italy), for their continuous support. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Journal of Applied Research in Technology & Engineering | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Biobased polymers | es_ES |
dc.subject | Biodegradable polymers | es_ES |
dc.subject | Polylactic acid | es_ES |
dc.subject | Plasticizers | es_ES |
dc.subject | Compostability | es_ES |
dc.title | Influence of plasticizers on the compostability of polylactic acid | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/jarte.2021.14772 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.description.bibliographicCitation | Arrieta, MP. (2021). Influence of plasticizers on the compostability of polylactic acid. Journal of Applied Research in Technology & Engineering. 2(1):1-9. https://doi.org/10.4995/jarte.2021.14772 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/jarte.2021.14772 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 2695-8821 | |
dc.relation.pasarela | OJS\14772 | es_ES |
dc.description.references | Abdelwahab, M.A., Flynn, A., Chiou, B.S., Imam, S., Orts, W., Chiellini, E. (2012). Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. Polymer Degradation and Stability, 97(9), 1822-1828. https://doi.org/10.1016/j.polymdegradstab.2012.05.036 | es_ES |
dc.description.references | Agüero, A., Morcillo, M.C., Quiles-Carrillo, L., Balart, R., Boronat, T., Lascano, D.,... Fenollar, O. (2019). Study of the influence of the reprocessing cycles on the final properties of polylactide pieces obtained by injection molding. Polymers, 11(12), 1908. https://doi.org/10.3390/polym11121908 | es_ES |
dc.description.references | Aragón-Gutierrez, A., Arrieta, M.P., López-González, M., Fernández-García, M., López, D. (2020). Hybrid Biocomposites Based on Poly (Lactic Acid) and Silica Aerogel for Food Packaging Applications. Materials, 13(21), 4910. https://doi.org/10.3390/ma13214910 | es_ES |
dc.description.references | Arrieta, M.P., Fortunati, E., Dominici, F., López, J., Kenny, J.M. (2015). Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends. Carbohydrate Polymers, 121(0), 265-275. https://doi.org/10.1016/j.carbpol.2014.12.056 | es_ES |
dc.description.references | Arrieta, M.P., Fortunati, E., Dominici, F., Rayón, E., López, J., Kenny, J.M. (2014a). Multifunctional PLA-PHB/cellulose nanocrystal films: Processing, structural and thermal properties. Carbohydrate Polymers, 107(0), 16-24.https://doi.org/10.1016/j.carbpol.2014.02.044 | es_ES |
dc.description.references | Arrieta, M.P., Fortunati, E., Dominici, F., Rayón, E., López, J., Kenny, J.M. (2014b). PLA-PHB/cellulose based films: Mechanical, barrier and disintegration properties. Polymer Degradation and Stability, 107, 139-149. https://doi.org/10.1016/j.polymdegradstab.2014.05.010 | es_ES |
dc.description.references | Arrieta, M.P., García, A.D., López, D., Fiori, S., Peponi, L. (2019). Antioxidant bilayers based on PHBV and plasticized electrospun PLA-PHB fibers encapsulating catechin. Nanomaterials, 9(3). https://doi.org/10.3390/nano9030346 | es_ES |
dc.description.references | Arrieta, M.P., López, J., Hernández, A., Rayón, E. (2014). Ternary PLA-PHB-Limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 50, 255-270. https://doi.org/10.1016/j.eurpolymj.2013.11.009 | es_ES |
dc.description.references | Arrieta, M.P., López, J., López, D., Kenny, J.M., Peponi, L. (2016a). Biodegradable electrospun bionanocomposite fibers based on plasticized PLA-PHB blends reinforced with cellulose nanocrystals. Industrial Crops and Products, 93, 290- 301. https://doi.org/10.1016/j.indcrop.2015.12.058 | es_ES |
dc.description.references | Arrieta, M.P., López, J., López, D., Kenny, J.M., Peponi, L. (2016b). Effect of chitosan and catechin addition on the structural, thermal, mechanical and disintegration properties of plasticized electrospun PLA-PHB biocomposites. Polymer Degradation and Stability, 132, 145-156. https://doi.org/10.1016/j.polymdegradstab.2016.02.027 | es_ES |
dc.description.references | Arrieta, M.P., López, J., Rayón, E., Jiménez, A. (2014b). Disintegrability under composting conditions of plasticized PLAPHB blends. Polymer Degradation and Stability. https://doi.org/10.1016/j.polymdegradstab.2014.01.034 | es_ES |
dc.description.references | Arrieta, M.P., Peponi, L. (2017). Polyurethane based on PLA and PCL incorporated with catechin: Structural, thermal and mechanical characterization. European Polymer Journal, 89, 174-184. https://doi.org/10.1016/j.eurpolymj.2017.02.028 | es_ES |
dc.description.references | Arrieta, M.P., Peponi, L., López, D., Fernández-García, M. (2018). Recovery of yerba mate (Ilex paraguariensis) residue for the development of PLA-based bionanocomposite films. Industrial Crops and Products, 111, 317-328. https://doi.org/10.1016/j.indcrop.2017.10.042 | es_ES |
dc.description.references | Arrieta, M.P., Perdiguero, M., Fiori, S., Kenny, J.M., Peponi, L. (2020). Biodegradable electrospun PLA-PHB fibers plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 179. https://doi.org/10.1016/j.polymdegradstab.2020.109226 | es_ES |
dc.description.references | Arrieta, M.P., Samper, M.D., Aldas, M., López, J. (2017). On the use of PLA-PHB blends for sustainable food packaging applications. Materials, 10(9), 1008. https://doi.org/10.3390/ma10091008 | es_ES |
dc.description.references | Arrieta, M.P., Sessini, V., Peponi, L. (2017). Biodegradable poly(ester-urethane) incorporated with catechin with shape memory and antioxidant activity for food packaging. European Polymer Journal, 94, 111-124.https://doi.org/10.1016/j.eurpolymj.2017.06.047 | es_ES |
dc.description.references | Auras, R.A., Harte, B., Selke, S., Hernandez, R. (2003). Mechanical, physical, and barrier properties of poly(lactide) films. Journal of Plastic Film and Sheeting, 19(2), 123-135. https://doi.org/10.1177/8756087903039702 | es_ES |
dc.description.references | Auras, R., Harte, B., Selke, S.E. (2004). An overview of polylactides as packaging materials. Macromolecular Bioscience, 4(9), 835-864. https://doi.org/10.1002/mabi.200400043 | es_ES |
dc.description.references | Balart, J., Montanes, N., Fombuena, V., Boronat, T., Sánchez-Nacher, L. (2018). Disintegration in compost conditions and water uptake of green composites from poly (lactic acid) and hazelnut shell flour. Journal of Polymers and the Environment, 26(2), 701-715. https://doi.org/10.1007/s10924-017-0988-3 | es_ES |
dc.description.references | Beltrán, F.R., Arrieta, M.P., Gaspar, G., de la Orden, M.U., Urreaga, J.M. (2020). Effect of lignocellulosic nanoparticles extracted from yerba mate (Ilex paraguariensis) on the structural, thermal, optical and barrier properties of mechanically recycled poly(lactic acid). Polymers, 12(8). https://doi.org/10.3390/polym12081690 | es_ES |
dc.description.references | Beltrán, F.R., Lorenzo, V., de la Orden, M.U., Martínez-Urreaga, J. (2016). Effect of different mechanical recycling processes on the hydrolytic degradation of poly(L-lactic acid). Polymer Degradation and Stability, 133, 339-348. https://doi.org/10.1016/j.polymdegradstab.2016.09.018 | es_ES |
dc.description.references | Bioplastics, E. (2020). from https://www.european-bioplastics.org/bioplastics/materials/ | es_ES |
dc.description.references | Burgos, N., Armentano, I., Fortunati, E., Dominici, F., Luzi, F., Fiori, S.,... Kenny, J.M. (2017). Functional Properties of Plasticized Bio-Based Poly(Lactic Acid)_Poly(Hydroxybutyrate) (PLA_PHB) Films for Active Food Packaging. Food and Bioprocess Technology, 10(4), 770-780. https://doi.org/10.1007/s11947-016-1846-3 | es_ES |
dc.description.references | Burgos, N., Martino, V.P., Jiménez, A. (2013). Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 98(2), 651-658. https://doi.org/10.1016/j.polymdegradstab.2012.11.009 | es_ES |
dc.description.references | Carbonell-Verdu, A., Ferri, J.M., Dominici, F., Boronat, T., Sanchez-Nacher, L., Balart, R., Torre, L. (2018). Manufacturing and compatibilization of PLA/PBAT binary blends by cottonseed oil-based derivatives. Express Polymer Letters, 12(9), 808-823. https://doi.org/10.3144/expresspolymlett.2018.69 | es_ES |
dc.description.references | Carbonell-Verdu, A., Garcia-Garcia, D., Dominici, F., Torre, L., Sanchez-Nacher, L., Balart, R. (2017). PLA films with improved flexibility properties by using maleinized cottonseed oil. European Polymer Journal, 91, 248-259.https://doi.org/10.1016/j.eurpolymj.2017.04.013 | es_ES |
dc.description.references | Carbonell-Verdu, A., Samper, M.D., Garcia-Garcia, D., Sanchez-Nacher, L., Balart, R. (2017). Plasticization effect of epoxidized cottonseed oil (ECSO) on poly(lactic acid). Industrial Crops and Products, 104, 278-286. https://doi.org/10.1016/j.indcrop.2017.04.050 | es_ES |
dc.description.references | Fortunati, E., Armentano, I., Iannoni, A., Kenny, J. (2010). Development and thermal behaviour of ternary PLA matrix composites. Polymer Degradation and Stability, 95(11), 2200-2206. https://doi.org/10.1016/j.polymdegradstab.2010.02.034 | es_ES |
dc.description.references | Fortunati, E., Armentano, I., Zhou, Q., Puglia, D., Terenzi, A., Berglund, L.A., Kenny, J. (2012a). Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polymer Degradation and Stability, 97(10), 2027-2036. https://doi.org/10.1016/j.polymdegradstab.2012.03.027 | es_ES |
dc.description.references | Fortunati, E., Luzi, F., Puglia, D., Dominici, F., Santulli, C., Kenny, J.M., Torre, L. (2014). Investigation of thermo-mechanical, chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves. European Polymer Journal, 56(1), 77-91. https://doi.org/10.1016/j.eurpolymj.2014.03.030 | es_ES |
dc.description.references | Fortunati, E., Puglia, D., Santulli, C., Sarasini, F., Kenny, J.M. (2012b). Biodegradation of Phormium tenax/poly(lactic acid) composites. Journal of Applied Polymer Science, 125(SUPPL. 2), E562-E572. https://doi.org/10.1002/app.36839 | es_ES |
dc.description.references | Garcia-Garcia, D., Carbonell-Verdu, A., Arrieta, M.P., López-Martínez, J., Samper, M.D. (2020). Improvement of PLA film ductility by plasticization with epoxidized karanja oil. Polymer Degradation and Stability, 179. https://doi.org/10.1016/j.polymdegradstab.2020.109259 | es_ES |
dc.description.references | Jamshidian, M., Tehrany, E.A., Imran, M., Jacquot, M., Desobry, S. (2010). Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Comprehensive Reviews in Food Science and Food Safety, 9(5), 552-571. https://doi.org/10.1111/j.1541-4337.2010.00126.x | es_ES |
dc.description.references | Kale, G., Auras, R., Singh, S.P. (2006). Degradation of Commercial Biodegradable Packages under Real Composting and Ambient Exposure Conditions. Journal of Polymers and the Environment, 14(3), 317-334. https://doi.org/10.1007/s10924-006-0015-6 | es_ES |
dc.description.references | Kale, G., Kijchavengkul, T., Auras, R., Rubino, M., Selke, S.E., Singh, S.P. (2007). Compostability of bioplastic packaging materials: An overview. Macromolecular Bioscience, 7(3), 255-277. https://doi.org/10.1002/mabi.200600168 | es_ES |
dc.description.references | Khabbaz, F., Karlsson, S., Albertsson, A.C. (2000). PY-GC/MS an effective technique to characterizing of degradation mechanism of poly (L-lactide) in the different environment. Journal of Applied Polymer Science, 78(13), 2369-2378. https://doi.org/10.1002/1097-4628(20001220)78:13<2369::AID-APP140>3.0.CO;2-N | es_ES |
dc.description.references | Lim, L.T., Auras, R., Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science (Oxford), 33(8), 820-852. https://doi.org/10.1016/j.progpolymsci.2008.05.004 | es_ES |
dc.description.references | Luzi, F., Dominici, F., Armentano, I., Fortunati, E., Burgos, N., Fiori, S.,... Torre, L. (2019). Combined effect of cellulose nanocrystals, carvacrol and oligomeric lactic acid in PLA_PHB polymeric films. Carbohydrate Polymers, 223. https://doi.org/10.1016/j.carbpol.2019.115131 | es_ES |
dc.description.references | Luzi, F., Fortunati, E., Puglia, D., Petrucci, R., Kenny, J.M., Torre, L. (2015). Study of disintegrability in compost and enzymatic degradation of PLA and PLA nanocomposites reinforced with cellulose nanocrystals extracted from Posidonia Oceanica. Polymer Degradation and Stability, 121, 105-115. https://doi.org/10.1016/j.polymdegradstab.2015.08.016 | es_ES |
dc.description.references | Madhavan, N.K., Nimisha Rajendran, N., Rojan Pappy, J. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. https://doi.org/10.1016/j.biortech.2010.05.092 | es_ES |
dc.description.references | Musioł, M., Sikorska, W., Adamus, G., Janeczek, H., Richert, J., Malinowski, R.,... Kowalczuk, M. (2016). Forensic engineering of advanced polymeric materials. Part III - Biodegradation of thermoformed rigid PLA packaging under industrial composting conditions. Waste Management, 52, 69-76. https://doi.org/10.1016/j.wasman.2016.04.016 | es_ES |
dc.description.references | Navarro-Baena, I., Marcos-Fernández, A., Fernández-Torres, A., Kenny, J.M., Peponi, L. (2014). Synthesis of PLLA-b-PCLb-PLLA linear tri-block copolymers and their corresponding poly (ester-urethane) s: effect of the molecular weight on their crystallisation and mechanical properties. RSC advances, 4(17), 8510-8524. https://doi.org/10.1039/c3ra44786c | es_ES |
dc.description.references | Oyama, H.T., Tanishima, D., Maekawa, S. (2016). Poly(malic acid-co-L-lactide) as a superb degradation accelerator for Poly(l-lactic acid) at physiological conditions. Polymer Degradation and Stability, 134, 265-271. https://doi.org/10.1016/j.polymdegradstab.2016.10.016 | es_ES |
dc.description.references | Pawlak, F., Aldas, M., Parres, F., López-Martínez, J., Arrieta, M.P. (2020). Silane-functionalized sheep wool fibers from dairy industry waste for the development of plasticized pla composites with maleinized linseed oil for injection-molded parts. Polymers, 12(11), 1-22. https://doi.org/10.3390/polym12112523 | es_ES |
dc.description.references | Petersson, L., Kvien, I., Oksman, K. (2007). Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Composites Science and Technology, 67(11), 2535-2544. https://doi.org/10.1016/j.compscitech.2006.12.012 | es_ES |
dc.description.references | Plastic Europe. (2019). Plastics - the Facts 2019. An analysis of European plastics production, demand and waste data., from https://www.plasticseurope.org/es/resources/publications/1804-plastics-facts-2019 | es_ES |
dc.description.references | Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., Torres-Giner, S. (2018b). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. https://doi.org/10.1016/j.compositesb.2018.04.017 | es_ES |
dc.description.references | Quiles-Carrillo, L., Montanes, N., Lagaron, J.M., Balart, R., Torres-Giner, S. (2018a). On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour. Polymer International, 67(10), 1341-1351. https://doi.org/10.1002/pi.5588 | es_ES |
dc.description.references | Ramos, M., Fortunati, E., Beltrán, A., Peltzer, M., Cristofaro, F., Visai, L.,... Garrigós, M.C. (2020). Controlled Release, Disintegration, Antioxidant, and Antimicrobial Properties of Poly (Lactic Acid)/Thymol/Nanoclay Composites. Polymers, 12(9), 1878. https://doi.org/10.3390/polym12091878 | es_ES |
dc.description.references | Ramos, M., Fortunati, E., Peltzer, M., Jimenez, A., Kenny, J.M., Garrigós, M.C. (2016). Characterization and disintegrability under composting conditions of PLA-based nanocomposite films with thymol and silver nanoparticles. Polymer Degradation and Stability, 132, 2-10. https://doi.org/10.1016/j.polymdegradstab.2016.05.015 | es_ES |
dc.description.references | Samper, M.D., Arrieta, M.P., Ferrándiz, S., López, J. (2014). Influence of biodegradable materials in the recycled polystyrene. Journal of Applied Polymer Science, 131(23). https://doi.org/10.1002/app.41161 | es_ES |
dc.description.references | Samper, M.D., Bertomeu, D., Arrieta, M.P., Ferri, J.M., López-Martínez, J. (2018). Interference of biodegradable plastics in the polypropylene recycling process. Materials, 11(10). https://doi.org/10.3390/ma11101886 | es_ES |
dc.description.references | Shah, A.A., Hasan, F., Hameed, A., Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. Biotechnology Advances, 26(3), 246-265. https://doi.org/10.1016/j.biotechadv.2007.12.005 | es_ES |
dc.description.references | Shinoda, H., Asou, Y., Kashima, T., Kato, T., Tseng, Y., Yagi, T. (2003). Amphiphilic biodegradable copolymer, poly(aspartic acid-co-lactide): acceleration of degradation rate and improvement of thermal stability for poly(lactic acid), poly(butylene succinate) and poly(ε-caprolactone). Polymer Degradation and Stability, 80(2), 241-250. https://doi.org/10.1016/S0141-3910(02)00404-4 | es_ES |
dc.description.references | Siracusa, V., Rocculi, P., Romani, S., Rosa, M.D. (2008). Biodegradable polymers for food packaging: a review. Trends in Food Science and Technology, 19(12), 634-643. https://doi.org/10.1016/j.tifs.2008.07.003 | es_ES |
dc.description.references | Song, J.H., Murphy, R.J., Narayan, R., Davies, G.B.H. (2009). Biodegradable and compostable alternatives to conventional plastics. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364(1526), 2127-2139. https://doi.org/10.1098/rstb.2008.0289 | es_ES |
dc.description.references | Sriyapai, P., Chansiri, K., Sriyapai, T. (2018). Isolation and characterization of polyester-based plastics-degrading bacteria from compost soils. Microbiology, 87(2), 290-300. https://doi.org/10.1134/S0026261718020157 | es_ES |
dc.description.references | UNE-EN ISO. (2016). Plastics - Determination of the degree of disintegration of plastic materials under simulated composting conditions in a laboratory-scale test (ISO 20200:2015). | es_ES |
dc.description.references | Villegas, C., Arrieta, M.P., Rojas, A., Torres, A., Faba, S., Toledo, M.J.,... Valenzuela, X. (2019). PLA/organoclay bionanocomposites impregnated with thymol and cinnamaldehyde by supercritical impregnation for active and sustainable food packaging. Composites Part B: Engineering, 176. https://doi.org/10.1016/j.compositesb.2019.107336 | es_ES |
dc.description.references | Vink, E.T.H., Rábago, K.R., Glassner, D.A., Gruber, P.R. (2003). Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polymer Degradation and Stability, 80(3), 403-419. https://doi.org/10.1016/S0141-3910(02)00372-5 | es_ES |
dc.description.references | Yagi, H., Ninomiya, F., Funabashi, M., Kunioka, M. (2013). Thermophilic anaerobic biodegradation test and analysis of eubacteria involved in anaerobic biodegradation of four specified biodegradable polyesters. Polymer Degradation and Stability, 98(6), 1182-1187. https://doi.org/10.1016/j.polymdegradstab.2013.03.010 | es_ES |