- -

Design and simulation of a resorbable bone fixation plate made by additive manufacturing for femoral mid-SHAFT fractures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Design and simulation of a resorbable bone fixation plate made by additive manufacturing for femoral mid-SHAFT fractures

Mostrar el registro completo del ítem

Ivorra Martínez, J.; Sellés Cantó, MÁ.; Sánchez Caballero, S.; Boronat Vitoria, T. (2021). Design and simulation of a resorbable bone fixation plate made by additive manufacturing for femoral mid-SHAFT fractures. Journal of Applied Research in Technology & Engineering. 2(1):11-16. https://doi.org/10.4995/jarte.2021.14712

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161617

Ficheros en el ítem

Metadatos del ítem

Título: Design and simulation of a resorbable bone fixation plate made by additive manufacturing for femoral mid-SHAFT fractures
Autor: Ivorra Martínez, Juan Sellés Cantó, Miguel Ángel Sánchez Caballero, Samuel Boronat Vitoria, Teodomiro
Entidad UPV: Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi
Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada
Fecha difusión:
Resumen:
[EN] Finite element method has been employed to establish the feasibility of a fixation plate made of PLA by additive manufacturing for femoral shaft fractures. For this purpose, Von Mises stress and the pressure contact ...[+]
Palabras clave: Femur , Mid-SHAFT , Finite element method , Resorbable , 3D printing
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Journal of Applied Research in Technology & Engineering. (eissn: 2695-8821 )
DOI: 10.4995/jarte.2021.14712
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/jarte.2021.14712
Código del Proyecto:
info:eu-repo/grantAgreement/AEI//FPU19%2F01759/
Agradecimientos:
J. Ivorra-Martinez is funded with a Formación de Profesorado Universitario (FPU) grant from the Spanish Government (Ministerio de Ciencia, Innovación y Universidades), with reference FPU19/01759.
Tipo: Artículo

References

Alizadeh-Osgouei, M., Li, Y., Wen, C. (2019). A comprehensive review of biodegradable synthetic polymerceramic composites and their manufacture for biomedical applications. Bioactive materials, 4(1), 22-36. https://doi.org/10.1016/j.bioactmat.2018.11.003

Arabnejad, S., Johnston, B., Tanzer, M., Pasini, D. (2017). Fully porous 3D printed titanium femoral stem toreduce stress-shielding following total hip arthroplasty. Journal of Orthopaedic Research, 35(8), 1774-1783.https://doi.org/10.1002/jor.23445

Elkins, J., Marsh, J.L., Lujan, T., Peindl, R., Kellam, J., Anderson, D D., & Lack, W. (2016). Motion predicts clinical callus formation: construct-specific finite element analysis of supracondylar femoral fractures. The Journal of bone and joint surgery. American volume, 98(4), 276. https://doi.org/10.2106/JBJS.O.00684 [+]
Alizadeh-Osgouei, M., Li, Y., Wen, C. (2019). A comprehensive review of biodegradable synthetic polymerceramic composites and their manufacture for biomedical applications. Bioactive materials, 4(1), 22-36. https://doi.org/10.1016/j.bioactmat.2018.11.003

Arabnejad, S., Johnston, B., Tanzer, M., Pasini, D. (2017). Fully porous 3D printed titanium femoral stem toreduce stress-shielding following total hip arthroplasty. Journal of Orthopaedic Research, 35(8), 1774-1783.https://doi.org/10.1002/jor.23445

Elkins, J., Marsh, J.L., Lujan, T., Peindl, R., Kellam, J., Anderson, D D., & Lack, W. (2016). Motion predicts clinical callus formation: construct-specific finite element analysis of supracondylar femoral fractures. The Journal of bone and joint surgery. American volume, 98(4), 276. https://doi.org/10.2106/JBJS.O.00684

Geetha, M., Singh, A.K., Asokamani, R., Gogia, A.K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants-a review. Progress in materials science, 54(3), 397-425. https://doi.org/10.1016/j.pmatsci.2008.06.004

George, D., Allena, R., Remond, Y. (2017). Mechanobiological stimuli for bone remodeling: mechanical energy, cell nutriments and mobility. Computer Methods in Biomechanics and Biomedical Engineering, 20(sup1), S91-S92, https://doi.org/10.1080/10255842.2017.1382876

Guastaldi, F., Martini, A., Rocha, E., Hochuli-Vieira, E., Guastaldi, A. (2019). Ti-15Mo Alloy Decreases the Stress Concentration in Mandibular Angle Fracture Internal Fixation Hardware. Journal of Maxillofacial and Oral Surgery, 19, 314-320. https://doi.org/10.1007/s12663-019-01251-8

Hayes, J., Richards, R. (2010). The use of titanium and stainless steel in fracture fixation. Expert review of medical devices, 7(6), 843-853. https://doi.org/10.1586/erd.10.53

Heimbach, B., Grassie, K., Shaw, M.T., Olson, J.R., Wei, M. (2017). Effect of hydroxyapatite concentration on highmodulus composite for biodegradable bone-fixation devices. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105(7), 1963-1971. https://doi.org/10.1002/jbm.b.33713

Jahagirdar, R., Scammell, B.E. (2009). Principles of fracture healing and disorders of bone union. Surgery (Oxford), 27(2), 63-69. https://doi.org/10.1016/j.mpsur.2008.12.011

Kanno, T., Sukegawa, S., Furuki, Y., Nariai, Y., Sekine, J. (2018). Overview of innovative advances in bioresorbable plate systems for oral and maxillofacial surgery. Japanese Dental Science Review, 54(3), 127-138. https://doi.org/10.1016/j.jdsr.2018.03.003

Kim, H.J., Chang, S.H., Jung, H.J. (2012). The simulation of tissue differentiation at a fracture gap using a mechanoregulation theory dealing with deviatoric strains in the presence of a composite bone plate. Composites Part B: Engineering, 43(3), 978-987. https://doi.org/10.1016/j.compositesb.2011.09.011

Klein, K.F., Hu, J., Reed, M.P., Hoff, C.N., Rupp, J.D. (2015). Development and validation of statistical models of femur geometry for use with parametric finite element models. Annals of biomedical engineering, 43(10), 2503-2514. https://doi.org/10.1007/s10439-015-1307-6

Li, J., Li, Z., Ye, L., Zhao, X., Coates, P., Caton-Rose, F. (2017). Structure and biocompatibility improvement mechanism of highly oriented poly (lactic acid) produced by solid die drawing. European Polymer Journal, 97, 68-76. https://doi.org/10.1016/j.eurpolymj.2017.09.038

Li, J., Qin, L., Yang, K., Ma, Z., Wang, Y., Cheng, L., Zhao, D. (2020). Materials evolution of bone plates for internal fixation of bone fractures: A review. Journal of Materials Science & Technology, 36, 190-208. https://doi.org/10.1016/j.jmst.2019.07.024

Li, J., Yin, P., Zhang, L., Chen, H., Tang, P. (2019). Medial anatomical buttress plate in treating displaced femoral neck fracture a finite element analysis. Injury, 50(11), 1895-1900. https://doi.org/10.1016/j.injury.2019.08.024

Liu, B., Zhang, S., Zhang, J., Xu, Z., Chen, Y., Liu, S., Yang, L. (2019). A personalized preoperative modeling system for internal fixation plates in long bone fracture surgery-A straightforward way from CT images to plate model. The International Journal of Medical Robotics and Computer Assisted Surgery, 15(5), e2029. https://doi.org/10.1002/rcs.2029

McClellan, R.T. (2013). The variable angle hip fracture nail relative to the Gamma 3: A finite element analysis illustrating the same stiffness and fatigue characteristics. Advances in orthopedics, 2013. https://doi.org/10.1155/2013/143801

Murr, L.E. (2016). Frontiers of 3D printing/additive manufacturing: from human organs to aircraft fabrication. Journal of Materials Science & Technology, 32(10), 987-995. https://doi.org/10.1016/j.jmst.2016.08.011

Narayanan, G., Vernekar, V.N., Kuyinu, E.L., Laurencin, C.T. (2016). Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Advanced drug delivery reviews, 107, 247-276. https://doi.org/10.1016/j.addr.2016.04.015

Nurettin, D., Burak, B. (2018). Feasibility of carbon-fiber-reinforced polymer fixation plates for treatment of atrophic mandibular fracture: A finite element method. Journal of Cranio-Maxillofacial Surgery, 46(12), 2182-2189. https://doi.org/10.1016/j.jcms.2018.09.030

Parthasarathy, J. (2015). 14 Additive Manufacturing of Medical Devices. Additive Manufacturing: Innovations, Advances, and Applications, 369.

Ridzwan, M., Shuib, S., Hassan, A., Shokri, A., Ibrahim, M. (2006). Optimization in implant topology to reduce stress shielding problem. Journal of Applied Sciences, 6(13), 2768-2773. https://doi.org/10.3923/jas.2006.2768.2773

Sariali, E., Mouttet, A., Pasquier, G., Durante, E. (2009). Three-dimensional hip anatomy in osteoarthritis: analysis of the femoral offset. The Journal of arthroplasty, 24(6), 990-997. https://doi.org/10.1016/j.arth.2008.04.031

Singh, D., Singh, R., Boparai, K.S. (2018). Development and surface improvement of FDM pattern based investment casting of biomedical implants: A state of art review. Journal of Manufacturing Processes, 31, 80-95. https://doi.org/10.1016/j.jmapro.2017.10.026

Spiridon, I., Tanase, C.E. (2018). Design, characterization and preliminary biological evaluation of new lignin-PLA biocomposites. International journal of biological macromolecules, 114, 855-863. https://doi.org/10.1016/j.ijbiomac.2018.03.140

Tang, G., Liu, S.L., Wang, D.M., Wei, G.F., Wang, C.T. (2013). Finite element analysis in femoral fixation with TA3 titanium compressioll plate. In Advanced Materials Research, 647, 16-19. Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMR.647.16

Tymrak, B., Kreiger, M., Pearce, J.M. (2014). Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Materials & Design, 58, 242-246. https://doi.org/10.1016/j.matdes.2014.02.038

Wang, A.Y., Peng, J., Sun, M.X., Sui, X., Wang, X., Tian, Y., Lu, S.B. (2006). Biomechanical comparison of different structural bone grafting in femoral heads' defects of weight-bearing region. Journal of Medical Biomechanics, 4.

Wang, J., Ma, J.X., Lu, B., Bai, H.H., Wang, Y., Ma, X.L. (2020). Comparative finite element analysis of three implants fixing stable and unstable subtrochanteric femoral fractures: Proximal Femoral Nail Antirotation (PFNA), Proximal Femoral Locking Plate (PFLP), and Reverse Less Invasive Stabilization System (LISS). Orthopaedics & Traumatology: Surgery & Research, 106(1), 95-101. https://doi.org/10.1016/j.otsr.2019.04.027

Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., Xie, Y.M. (2016). Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials, 83, 127-141. https://doi.org/10.1016/j.biomaterials.2016.01.012

Wu, C., Zheng, K., Fang, J., Steven, G.P., Li, Q. (2020). Time-dependent topology optimization of bone plates considering bone remodeling. Computer Methods in Applied Mechanics and Engineering, 359, 112702. https://doi.org/10.1016/j.cma.2019.112702

Wu, K.J., Li, S.H., Yeh, K.T., Chen, H., Lee, R.P., Yu, T.C., Wang, J.H. (2019). The risk factors of nonunion after intramedullary nailing fixation of femur shaft fracture in middle age patients. Medicine, 98(29). https://doi.org/10.1097/MD.0000000000016559

Wu, X., Wang, Z., Li, H., Li, Y., Wang, H., Tian, W. (2019). Biomechanical evaluation of osteoporotic fracture: Metal fixation versus absorbable fixation in Sawbones models. Injury, 50(7), 1272-1276. https://doi.org/10.1016/j.injury.2019.05.023

Zhao, X., Niinomi, M., Nakai, M., Hieda, J., Ishimoto, T., Nakano, T. (2012). Optimization of Cr content of metastable β-type Ti-Cr alloys with changeable Young's modulus for spinal fixation applications. Acta biomaterialia, 8(6), 2392-2400. https://doi.org/10.1016/j.actbio.2012.02.010

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem