- -

Integration of FMECA and statistical snalysis for predictive maintenance

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Integration of FMECA and statistical snalysis for predictive maintenance

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ghani, Rabia es_ES
dc.date.accessioned 2021-02-17T08:14:36Z
dc.date.available 2021-02-17T08:14:36Z
dc.date.issued 2021-01-26
dc.identifier.uri http://hdl.handle.net/10251/161620
dc.description.abstract [EN] The estimation of time-to-failure of machines is of utmost importance in the Manufacturing Industry. As the world is moving towards Industry 4.0, it is high time that we progress from the traditional methods, where we wait for a breakdown to occur, to the prognostics based methods. It is the need of the era to be aware of any incident before it occurs. This study provides application of Statistical-based Predictive maintenance. A BOPP Production line has been considered as a case study for this research. Since the inception of the line in 2013, it is evident that 60% of breakdowns are due to lack of maintenance and timely replacement of bearings. Therefore, the research is based on the application of FMECA (Failure Modes, Effects and Criticality Analysis) to determine which bearing in the production line is most prone to failure and determination of which statistical model best fits the failure data of the most critical bearing. The result provides the best distribution fit for the failure data and the fit can be utilized for further study on RUL (Remaining Useful Life) of the bearing through Bayesian Inference. es_ES
dc.description.sponsorship The author would like to express great appreciation to Dr. Tariq Mairaj for his valuable suggestions. I would also like to extend my thanks to TriPack Films, QVISE Pvt. Ltd., NUST PNEC and PNEC NDT Lab for offering me the resources. Finally, I wish to thank my parents, siblings, Engr. Iqra Johim and Dr. Hiba Rehman & her family for their support and encouragement throughout the study. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Journal of Applied Research in Technology & Engineering es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject FMECA (Failure Modes, Effects and Criticality Analysis) es_ES
dc.subject Rayleigh Distribution es_ES
dc.subject Predictive Maintenance es_ES
dc.subject BOPP Production Line es_ES
dc.subject Bearings es_ES
dc.subject Time to Failure es_ES
dc.title Integration of FMECA and statistical snalysis for predictive maintenance es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/jarte.2021.14737
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Ghani, R. (2021). Integration of FMECA and statistical snalysis for predictive maintenance. Journal of Applied Research in Technology & Engineering. 2(1):33-37. https://doi.org/10.4995/jarte.2021.14737 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/jarte.2021.14737 es_ES
dc.description.upvformatpinicio 33 es_ES
dc.description.upvformatpfin 37 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2695-8821
dc.relation.pasarela OJS\14737 es_ES
dc.description.references Becker, W.T., Shipley, R.J. (2002). Failure Analysis and Prevention. In W. T. Becker, & R. J. https://doi.org/10.31399/asm.hb.v11.9781627081801 es_ES
dc.description.references Carlson, C.S. (2014). Understanding and Applying the Fundamentals of FMEAs. 2014 Annual Reliability and Maintainability Symposium. Tucson: IEEE. es_ES
dc.description.references Carlson, C.S. (2016). Understanding and Applying the Fundamentals of FMEAs. Reliability and Maintainability Symposium. es_ES
dc.description.references Carnero, M. (2006). An evaluation system of the setting up of predictive maintenance programmes. Reliability Engineering and System Safety, 91, 945-963. https://doi.org/10.1016/j.ress.2005.09.003 es_ES
dc.description.references Merovci, F., Elbatal, I. (2015). Weibull Rayleigh Distribution: Theory and Applications. Applied Mathematics & Information Sciences, 9(5), 1-11. es_ES
dc.description.references Mobley, R.K. (2002). An Introduction to Predictive Maintenance. Woburn, Massachusetts, USA: Elsevier Science. https://doi.org/10.1016/B978-075067531-4/50006-3 es_ES
dc.description.references Muller, C. (2003). Reliability Analysis of the 4.5 Roller Bearing. Monterey, California: Naval Postgraduate School. es_ES
dc.description.references Rao, B. (1996). Handbook of Condition Monitoring. Oxford: Elsevier Advanced Technology. es_ES
dc.description.references Sahoo, T., Sarkar, P.K., Sarkar, A.K. (2014). Maintenance optimization for critical equipments in process industries based on FMECA method. International Journal of Engineering and Innovative Technology, 3(10), 107-112. es_ES
dc.description.references Susto, G.A., Beghi, A., Luca, C.D. (2012). A Predictive Maintenance System for Epitaxy Processes Based on Filtering and Prediction Techniques. IEEE Transactions on Semiconductor Manufacturing, 25(4), 638-649. https://doi.org/10.1109/TSM.2012.2209131 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem