Mostrar el registro sencillo del ítem
dc.contributor.author | Standridge, C. | es_ES |
dc.contributor.author | Wynne, M. | es_ES |
dc.date.accessioned | 2021-02-17T10:40:28Z | |
dc.date.available | 2021-02-17T10:40:28Z | |
dc.date.issued | 2021-01-29 | |
dc.identifier.uri | http://hdl.handle.net/10251/161641 | |
dc.description.abstract | [EN] The throughput potential of a production system must be designed and validated before implementation. Design includes creating product flow by setting the takt time consistent with meeting customer demand per time period and the average cycle time at each workstation being less than the takt time. Creating product flow implies that the average waiting time preceding each workstation is no greater than the takt time. Kingman’s equation for the average waiting time can be solved for the variation component given the utilization, and the cycle time. The variation component consists of the variation in the demand and the variation in cycle time. Given the variation in demand, the maximum allowable variation in cycle time to create flow can be determined. Throughput potential validation is often performed using discrete event simulation modeling and experimentation. If the variation in cycle time at every workstation is small enough to create flow, then a deterministic simulation experiment can be used. An industrial example concerning a tier-1 automotive supplier with two possible production systems designs and various levels of variation in demand assumed is used to demonstrate the effectiveness of throughput validation using deterministic discrete event simulation modeling and experimentation. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | International Journal of Production Management and Engineering | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Throughput potential validation | es_ES |
dc.subject | Kingman’s equation | es_ES |
dc.subject | Discrete event simulation | es_ES |
dc.title | Validation of production system throughput potential and simulation experiment design | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/ijpme.2021.14483 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Standridge, C.; Wynne, M. (2021). Validation of production system throughput potential and simulation experiment design. International Journal of Production Management and Engineering. 9(1):15-23. https://doi.org/10.4995/ijpme.2021.14483 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/ijpme.2021.14483 | es_ES |
dc.description.upvformatpinicio | 15 | es_ES |
dc.description.upvformatpfin | 23 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 2340-4876 | |
dc.relation.pasarela | OJS\14483 | es_ES |
dc.description.references | Atalan, A., Dönmez, C.C. (2020). Optimizing experimental simulation design for the emergency departments. Brazilian Journal of Operations & Production Management, 17(4), e2020854. https://doi.org/10.14488/BJOPM.2020.026 | es_ES |
dc.description.references | Askin, R.G., Standridge, C.R. (1993). Modeling and analysis of manufacturing systems. New York: John Wiley and Sons. | es_ES |
dc.description.references | Dagkakis, G., Rotondo, A., Heavey, C. (2019). Embedding optimization with deterministic discrete event simulation for assignment of cross-trained operators: an assembly line case study. Computers and Operations Research, 111, 99-115. https://doi.org/10.1016/j.cor.2019.06.008 | es_ES |
dc.description.references | Ferrin, D.M., Miller M.J., Muthler D. (2005). Lean sigma and simulation, so what's the correlation?, in Proceedings of the 2005 Winter Simulation Conference, IEEE, USA. Retrieved July 22, 2020 from: https://informs-sim.org/wsc05papers/249.pdf | es_ES |
dc.description.references | Hopp, W.J., Spearman, M.L. (2011). Factory Physics: Foundations of manufacturing management, 3rd ed. Long Grove, IL: Waveland Press. | es_ES |
dc.description.references | Jayaraman, A., Gunal, A.K. (1997). Applications of discrete event simulation in the design of automotive powertrain manufacturing systems". In Proceedings of the 1997 Winter Simulation Conference, IEEE, USA. https://doi.org/10.1145/268437.268620 | es_ES |
dc.description.references | Khan, S., Standridge, C.R. (2019). Aggregate simulation modeling with application to setting the CONWIP limit in an HMLV cell. International Journal of Industrial Engineering Computation, 10(2), 149-160. https://doi.org/10.5267/j.ijiec.2018.10.002 | es_ES |
dc.description.references | Kingman, J.F.C. (1961). The single server queue in heavy traffic. Mathematical Proceedings of the Cambridge Philosophical Society, 57(4), 902. https://doi.org/10.1017/S0305004100036094 | es_ES |
dc.description.references | Kleijnen, J.P.C. (2015). Design and analysis of simulation experiments. New York: Springer. https://doi.org/10.1007/978-3-319-18087-8 | es_ES |
dc.description.references | Kleijnen, J.P.C., Standridge, C.R. (1988). Experimental design and regression analysis in simulation: an FMS case study. European Journal of Operations Research, 33, 257-261. https://doi.org/10.1016/0377-2217(88)90168-3 | es_ES |
dc.description.references | Law, A.M. (2014). Simulation modeling and analysis, 5th ed. New York: McGraw-Hill. | es_ES |
dc.description.references | Little, J.D.C. (1961). A proof for the queuing formula: L = λW. Operations Research, 9(3), 383-387. https://doi.org/10.1287/opre.9.3.383 | es_ES |
dc.description.references | Marvel, J.H., Standridge, C.R. (2009). A simulation enhanced lean design process. Journal of Industrial Engineering and Management, 2(1), 90-113. https://doi.org/10.3926/jiem.2009.v2n1.p90-113 | es_ES |
dc.description.references | Mourtzis, D. (2019) Simulation in the design and operation of manufacturing systems: state of the art and new trends. International Journal of Production Research, 58(7), 1927-1949. https://doi.org/10.1080/00207543.2019.1636321 | es_ES |
dc.description.references | Pinheiro, N.M.G, Cleto, M.G., Zattar, I.C., Muller, S.I.M.G. (2019). Performance evaluation of pulled, pushed and hybrid production through simulation: a case study. Brazilian Journal of Operations & Production Management, 16, 685-697. https://doi.org/10.14488/BJOPM.2019.v16.n4.a13 | es_ES |
dc.description.references | Pritsker, A.A.B. (1989). Why simulation works. In Proceedings of the 1989 Winter Simulation Conference, IEEE, USA. https://doi.org/10.1145/76738.76739 | es_ES |
dc.description.references | Puvanasvaran, P., Teoh, Y.S., Ito, K. (2020). Novel availability and performance ratio for internal transportation and manufacturing processes in job shop company. Journal of Industrial Engineering and Management, 13(1), 1-17. https://doi.org/10.3926/jiem.2755 | es_ES |
dc.description.references | Sanchez, S.M., Sanchez, P.J., Wan, H. (2020). Work smarter, not harder: a tutorial on designing and conducting simulation experiments. In Proceedings of the 2020 Winter Simulation Conference, IEEE, USA. Retrieved December 23, 2020 from https://informs-sim.org/ wsc20papers/135.pdf | es_ES |
dc.description.references | Schruben, L. (1983). Simulation modeling with event graphs. Communications of the A.C.M., 26(11). https://doi.org/10.1145/182.358460 | es_ES |
dc.description.references | Spearman, M.L., Woodruff, D.L., Hopp, W.J. (1990). CONWIP: A pull alternative to Kanban, International Journal of Production Research, 28(5), 879-894. https://doi.org/10.1080/00207549008942761 | es_ES |
dc.description.references | Standridge, C.R. (2019). Introduction to production: philosophies, flow, and analysis. Allendale Michigan: Grand Valley State University Libraries. Retrieved July 22, 2020 from: https://scholarworks.gvsu.edu/books/22/ | es_ES |
dc.description.references | Tapping, D., Luyster, T., Shuker, T. (2002). Value stream management. Boca Raton: CRC Press. https://doi.org/10.4324/9781482278163 | es_ES |
dc.description.references | Tribastone, M., Vandin, A. (2018). Speeding up stochastic and deterministic simulation by aggregation: an advanced tutorial. . In Proceedings of the 2018 Winter Simulation Conference, IEEE, USA. https://doi.org/10.1109/WSC.2018.8632364 | es_ES |
dc.description.references | Uriarte, A.G., Ng, A.H.C., Moris, M.U. (2020). Bringing together Lean and simulation: a comprehensive review, International Journal of Production Research, 58(1), 87-117. https://doi.org/10.1080/00207543.2019.1643512 | es_ES |
dc.description.references | Zupan, H., Herakovic. N. (2015). Production line balancing with discrete event simulation: a case study", IFAC-PapersOnLine, 48(3), 2305- 2311. https://doi.org/10.1016/j.ifacol.2015.06.431 | es_ES |