Mostrar el registro sencillo del ítem
dc.contributor.author | Poler Escoto, Raúl | es_ES |
dc.contributor.author | Andres, Beatriz | es_ES |
dc.contributor.author | Guzmán Ortiz, Eduardo | es_ES |
dc.date.accessioned | 2021-02-17T12:16:34Z | |
dc.date.available | 2021-02-17T12:16:34Z | |
dc.date.issued | 2021-01-27 | |
dc.identifier.uri | http://hdl.handle.net/10251/161663 | |
dc.description.abstract | [EN] In this paper, we present a software tool entitled E-aplan Express (version 2018), with free access for educational and commercial use, to the modelling and resolution of aggregate production plans generating medium-long term production planning, based on a forecasted demand in that period. E-aplan tool models the aggregate production plan though a mixed integer linear programming model (MILP). The LP solver optimization engine generates the planning by adjusting all the optimization variables with the least possible error. Finally, it is presented an illustrative example that considers a collaborative aggregate production planning, in a two-echelon supply chain. Different scenarios are modelled in order to simultaneously consider the planning objectives of both enterprises of the network. | es_ES |
dc.description.abstract | [ES] En este trabajo se presenta una herramienta informática titulada E–aplan Express (versión 2018), de libre acceso para uso educativo y comercial, para la modelización y resolución de planes de producción agregados generando una planificación de la producción a medio-largo plazo, en base a una demanda prevista en ese periodo. La herramienta E–aplan modela el plan de producción agregado a través de un modelo de programación lineal entera mixta (MILP). El motor de optimización LP solver genera la planificación ajustando todas las variables de optimización con el menor error posible. Por último, se presenta un ejemplo ilustrativo que considera una planificación de la producción agregada colaborativa, en una cadena de suministro de dos eslabones. Se modelan diferentes escenarios para considerar simultáneamente los objetivos de planificación de las dos empresas de la red. | es_ES |
dc.description.sponsorship | Consellería de Educación, Investigación, Cultura y Deporte - Generalitat Valenciana for hiring pre-doctoral research staff with Grant (ACIF/2018/170); European Social Fund with Grant Operational Program of FSE 2014–2020, the Valencian Community. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Modelling in Science Education and Learning | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Planning | es_ES |
dc.subject | Aggregate production | es_ES |
dc.subject | Collaborative | es_ES |
dc.subject | Industrial engineering students | es_ES |
dc.subject | Planificación | es_ES |
dc.subject | Producción agregada | es_ES |
dc.subject | Colaborativa | es_ES |
dc.subject | Estudiantes de ingeniería industrial | es_ES |
dc.title | E-aplan: a tool for teaching collaborative aggregate production planning in industrial engineering | es_ES |
dc.title.alternative | E–aplan: una herramienta para la enseñanza de la planificación colaborativa de la producción agregada en ingeniería industrial | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/msel.2021.14440 | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACIF%2F2018%2F170/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Investigación en Gestión e Ingeniería de Producción - Centre d'Investigació en Gestió i Enginyeria de Producció | es_ES |
dc.description.bibliographicCitation | Poler Escoto, R.; Andres, B.; Guzmán Ortiz, E. (2021). E-aplan: a tool for teaching collaborative aggregate production planning in industrial engineering. Modelling in Science Education and Learning. 14(1):67-76. https://doi.org/10.4995/msel.2021.14440 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/msel.2021.14440 | es_ES |
dc.description.upvformatpinicio | 67 | es_ES |
dc.description.upvformatpfin | 76 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 14 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1988-3145 | |
dc.relation.pasarela | OJS\14440 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Alarcón, F., Alemany, M. M. E., Ortiz, A., and Lario, F. C. (2006). Modelling the order promising process for collaborative networks. EWork and EBusiness in Architecture, Engineering and Construction. ECPPM 2006: European Conference on Product and Process Modelling 2006 (ECPPM 2006), Valencia, Spain, 13-15 September 2006, 467. | es_ES |
dc.description.references | Andres, B., and Poler, R. (2016). Models, guidelines and tools for the integration of collaborative processes in non-hierarchical manufacturing networks: a review. International Journal of Computer Integrated Manufacturing, 2(29), 166-201. https://doi.org/10.1080/0951192X.2014.1003148 | es_ES |
dc.description.references | Andres, Beatriz, Sanchis, R., y Poler, R. (2016). Modelado y simulación de la cadena de suministro con AnyLogic R . Modelling in Science Education and Learning, 9(1), 57. https://doi.org/10.4995/msel.2016.3520 | es_ES |
dc.description.references | Berezinets, I., Nikolchenko, N., and Zenkevich, N. (2020). Is collaborative planning a determinant of financial performance in supply chain? Empirical study. International Journal of Information Systems and Supply Chain Management, 13(3), 38-53. https://doi.org/10.4018/IJISSCM.2020070103 | es_ES |
dc.description.references | Cheraghalikhani, A., Khoshalhan, F., and Mokhtari, H. (2019). Aggregate production planning: A literature review and future research directions. International Journal of Industrial Engineering Computations, 10(2), 309-330. https://doi.org/10.5267/j.ijiec.2018.6.002 | es_ES |
dc.description.references | Dudek, G., and Stadtler, H. (2005). Negotiation-based collaborative planning between supply chains partners. European Journal of Operational Research, 163(3), 668-687. https://doi.org/10.1016/j.ejor.2004.01.014 | es_ES |
dc.description.references | Gupta, A., and Maranas, C. D. (2003). Managing demand uncertainty in supply chain planning. Computers and Chemical Engineering, 27(8-9), 1219-1227. https://doi.org/10.1016/S0098-1354(03)00048-6 | es_ES |
dc.description.references | Jacobs, F. R., Berry, W. L., Whybark, D. C., and Vollmann, T. E. (2011). Manufacturing Planning and Control for Supply Chain Management. McGraw-Hill Professional. | es_ES |
dc.description.references | Jacobs, F. R., and Chase, R. B. (2018). Operations and supply chain management (Fifteenth). McGraw Hill. | es_ES |
dc.description.references | Mula, J., and Poler, R. (2011). Applied mathematical modelling for Industrial Engineers. Modelling in Science Education and Learning, 4(25), 307. https://doi.org/10.4995/msel.2011.3097 | es_ES |
dc.description.references | Pereira, D. F., Oliveira, J. F., and Carravilla, M. A. (2020). Tactical sales and operations planning: A holistic framework and a literature review of decision-making models. International Journal of Production Economics, 228(July 2019), 107695. https://doi.org/10.1016/j.ijpe.2020.107695 | es_ES |
dc.description.references | Poler, R., Mula, J., y Díaz-Madroñero, M. (2013). ADGIP: Una herramienta docente para el modelado y resolución de árboles de decisión. Modelling in Science Education and Learning, 6(16), 197. https://doi.org/10.4995/msel.2013.1946 | es_ES |