- -

PDMS membranes for feasible recovery of dissolved methane from AnMBR effluents

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

PDMS membranes for feasible recovery of dissolved methane from AnMBR effluents

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sanchis-Perucho, Pau es_ES
dc.contributor.author Robles Martínez, Ángel es_ES
dc.contributor.author Durán, Freddy es_ES
dc.contributor.author FERRER, J. es_ES
dc.contributor.author Seco, Aurora es_ES
dc.date.accessioned 2021-02-18T04:32:12Z
dc.date.available 2021-02-18T04:32:12Z
dc.date.issued 2020-06-01 es_ES
dc.identifier.issn 0376-7388 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161699
dc.description.abstract [EN] This study aimed to evaluate the feasibility of degassing membrane (DM) technology for recovering dissolved methane from AnMBR effluents. For that purpose, a PDMS membrane module was operated for treating the effluent from an AnMBR prototype-plant, which treated urban wastewater (UWW) at ambient temperature. Different transmembrane pressures and liquid flow rates were applied for evaluating methane recovery efficiency. Maximum methane recoveries were achieved when increasing the vacuum pressure and reducing the liquid flow rate, reaching a maximum methane recovery efficiency of around 80% at a transmembrane pressure (TMP) of 0.8 bars and a treatment flow rate (Q(L)) of 50 L h(-1). The results revealed that the combination of PDMS DMs and AnMBR technology would allow to reduce the energy demand of UWW treatment, achieving net energy productions while reducing greenhouse gas emissions. Optimum operation was determined at a TMP of 0.8 bars and a Q(L) of 150 L h(-1) when combining energy, environmental and economic targets. Under these operating conditions, the combination AnMBR + DM resulted in energy requirements and greenhouse gases emissions of -0.040 kWh and 0.113 kg of CO2-eq per m(3) of treated water, respectively, resulting in a DM payback period of around 10.5 years. es_ES
dc.description.sponsorship This research work was supported by Generalitat Valenciana via the fellowships CPI-16-155 and C12747, as well as the financial aid received from Ministerio de Economia y Competitividad via Juan de la Cierva contract FJCI-2014-21616. This research work was also possible thanks to co-finance of the European financial instrument for the Environment (LIFE+) during the implementation of the Project Membrane for ENERGY and WATER RECOVERY "MEMORY" (LIFE13 ENV/ES/001353). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Membrane Science es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Anaerobic membrane bioreactor (AnMBR) es_ES
dc.subject Greenhouse gas (GHG) es_ES
dc.subject Methane recovery es_ES
dc.subject PDMS degassing Membrane es_ES
dc.subject Urban wastewater es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title PDMS membranes for feasible recovery of dissolved methane from AnMBR effluents es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.memsci.2020.118070 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FJCI-2014-21616/ES/FJCI-2014-21616/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//LIFE13 ENV%2FES%2F001353/EU/Membrane for ENERGY and WATER RECOVERY/LIFE MEMORY/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//CPI-16-155/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//C12747/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Sanchis-Perucho, P.; Robles Martínez, Á.; Durán, F.; Ferrer, J.; Seco, A. (2020). PDMS membranes for feasible recovery of dissolved methane from AnMBR effluents. Journal of Membrane Science. 604:1-12. https://doi.org/10.1016/j.memsci.2020.118070 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.memsci.2020.118070 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 604 es_ES
dc.relation.pasarela S\421283 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references McCarty, P. L., Bae, J., & Kim, J. (2011). Domestic Wastewater Treatment as a Net Energy Producer–Can This be Achieved? Environmental Science & Technology, 45(17), 7100-7106. doi:10.1021/es2014264 es_ES
dc.description.references Pretel, R., Shoener, B. D., Ferrer, J., & Guest, J. S. (2015). Navigating environmental, economic, and technological trade-offs in the design and operation of submerged anaerobic membrane bioreactors (AnMBRs). Water Research, 87, 531-541. doi:10.1016/j.watres.2015.07.002 es_ES
dc.description.references Guest, J. S., Skerlos, S. J., Barnard, J. L., Beck, M. B., Daigger, G. T., Hilger, H., … Love, N. G. (2009). A New Planning and Design Paradigm to Achieve Sustainable Resource Recovery from Wastewater. Environmental Science & Technology, 43(16), 6126-6130. doi:10.1021/es9010515 es_ES
dc.description.references Smith, A. L., Stadler, L. B., Love, N. G., Skerlos, S. J., & Raskin, L. (2012). Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: A critical review. Bioresource Technology, 122, 149-159. doi:10.1016/j.biortech.2012.04.055 es_ES
dc.description.references Robles, Á., Ruano, M. V., Charfi, A., Lesage, G., Heran, M., Harmand, J., … Ferrer, J. (2018). A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, 270, 612-626. doi:10.1016/j.biortech.2018.09.049 es_ES
dc.description.references Wang, W., Yang, Q., Zheng, S., & Wu, D. (2013). Anaerobic membrane bioreactor (AnMBR) for bamboo industry wastewater treatment. Bioresource Technology, 149, 292-300. doi:10.1016/j.biortech.2013.09.068 es_ES
dc.description.references Pretel, R., Robles, A., Ruano, M. V., Seco, A., & Ferrer, J. (2014). The operating cost of an anaerobic membrane bioreactor (AnMBR) treating sulphate-rich urban wastewater. Separation and Purification Technology, 126, 30-38. doi:10.1016/j.seppur.2014.02.013 es_ES
dc.description.references Xia, T., Gao, X., Wang, C., Xu, X., & Zhu, L. (2016). An enhanced anaerobic membrane bioreactor treating bamboo industry wastewater by bamboo charcoal addition: Performance and microbial community analysis. Bioresource Technology, 220, 26-33. doi:10.1016/j.biortech.2016.08.057 es_ES
dc.description.references Aslam, M., McCarty, P. L., Shin, C., Bae, J., & Kim, J. (2017). Low energy single-staged anaerobic fluidized bed ceramic membrane bioreactor (AFCMBR) for wastewater treatment. Bioresource Technology, 240, 33-41. doi:10.1016/j.biortech.2017.03.017 es_ES
dc.description.references Aslam, M., Charfi, A., Lesage, G., Heran, M., & Kim, J. (2017). Membrane bioreactors for wastewater treatment: A review of mechanical cleaning by scouring agents to control membrane fouling. Chemical Engineering Journal, 307, 897-913. doi:10.1016/j.cej.2016.08.144 es_ES
dc.description.references Giménez, J. B., Martí, N., Ferrer, J., & Seco, A. (2012). Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: Evaluation of methane losses with the effluent. Bioresource Technology, 118, 67-72. doi:10.1016/j.biortech.2012.05.019 es_ES
dc.description.references Giménez, J. B., Martí, N., Robles, A., Ferrer, J., & Seco, A. (2014). Anaerobic treatment of urban wastewater in membrane bioreactors: evaluation of seasonal temperature variations. Water Science and Technology, 69(7), 1581-1588. doi:10.2166/wst.2014.069 es_ES
dc.description.references Cookney, J., Mcleod, A., Mathioudakis, V., Ncube, P., Soares, A., Jefferson, B., & McAdam, E. J. (2016). Dissolved methane recovery from anaerobic effluents using hollow fibre membrane contactors. Journal of Membrane Science, 502, 141-150. doi:10.1016/j.memsci.2015.12.037 es_ES
dc.description.references Heile, S., Chernicharo, C. A. L., Brandt, E. M. F., & McAdam, E. J. (2017). Dissolved gas separation for engineered anaerobic wastewater systems. Separation and Purification Technology, 189, 405-418. doi:10.1016/j.seppur.2017.08.021 es_ES
dc.description.references Chen, S., & Smith, A. L. (2018). Methane-driven microbial fuel cells recover energy and mitigate dissolved methane emissions from anaerobic effluents. Environmental Science: Water Research & Technology, 4(1), 67-79. doi:10.1039/c7ew00293a es_ES
dc.description.references Raghoebarsing, A. A., Pol, A., van de Pas-Schoonen, K. T., Smolders, A. J. P., Ettwig, K. F., Rijpstra, W. I. C., … Strous, M. (2006). A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440(7086), 918-921. doi:10.1038/nature04617 es_ES
dc.description.references Knittel, K., & Boetius, A. (2009). Anaerobic Oxidation of Methane: Progress with an Unknown Process. Annual Review of Microbiology, 63(1), 311-334. doi:10.1146/annurev.micro.61.080706.093130 es_ES
dc.description.references Hatamoto, M., Yamamoto, H., Kindaichi, T., Ozaki, N., & Ohashi, A. (2010). Biological oxidation of dissolved methane in effluents from anaerobic reactors using a down-flow hanging sponge reactor. Water Research, 44(5), 1409-1418. doi:10.1016/j.watres.2009.11.021 es_ES
dc.description.references Matsuura, N., Hatamoto, M., Sumino, H., Syutsubo, K., Yamaguchi, T., & Ohashi, A. (2010). Closed DHS system to prevent dissolved methane emissions as greenhouse gas in anaerobic wastewater treatment by its recovery and biological oxidation. Water Science and Technology, 61(9), 2407-2415. doi:10.2166/wst.2010.219 es_ES
dc.description.references Myung, J., Saikaly, P. E., & Logan, B. E. (2018). A two-staged system to generate electricity in microbial fuel cells using methane. Chemical Engineering Journal, 352, 262-267. doi:10.1016/j.cej.2018.07.017 es_ES
dc.description.references Chen, S., & Smith, A. L. (2019). Performance and microbial ecology of methane-driven microbial fuel cells at temperatures ranging from 25 to 5 °C. Water Research, 166, 115036. doi:10.1016/j.watres.2019.115036 es_ES
dc.description.references Crone, B. C., Garland, J. L., Sorial, G. A., & Vane, L. M. (2017). Corrigendum to «Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product: A review» [Water Res. 104 (2016) 520–531]. Water Research, 111, 420. doi:10.1016/j.watres.2017.01.035 es_ES
dc.description.references Henares, M., Izquierdo, M., Penya-Roja, J. M., & Martínez-Soria, V. (2016). Comparative study of degassing membrane modules for the removal of methane from Expanded Granular Sludge Bed anaerobic reactor effluent. Separation and Purification Technology, 170, 22-29. doi:10.1016/j.seppur.2016.06.024 es_ES
dc.description.references Henares, M., Izquierdo, M., Marzal, P., & Martínez-Soria, V. (2017). Demethanization of aqueous anaerobic effluents using a polydimethylsiloxane membrane module: Mass transfer, fouling and energy analysis. Separation and Purification Technology, 186, 10-19. doi:10.1016/j.seppur.2017.05.035 es_ES
dc.description.references Bandara, W. M. K. R. T. W., Satoh, H., Sasakawa, M., Nakahara, Y., Takahashi, M., & Okabe, S. (2011). Removal of residual dissolved methane gas in an upflow anaerobic sludge blanket reactor treating low-strength wastewater at low temperature with degassing membrane. Water Research, 45(11), 3533-3540. doi:10.1016/j.watres.2011.04.030 es_ES
dc.description.references Bandara, W. M. K. R. T. W., Kindaichi, T., Satoh, H., Sasakawa, M., Nakahara, Y., Takahashi, M., & Okabe, S. (2012). Anaerobic treatment of municipal wastewater at ambient temperature: Analysis of archaeal community structure and recovery of dissolved methane. Water Research, 46(17), 5756-5764. doi:10.1016/j.watres.2012.07.061 es_ES
dc.description.references Malek, A., Li, K., & Teo, W. K. (1997). Modeling of Microporous Hollow Fiber Membrane Modules Operated under Partially Wetted Conditions. Industrial & Engineering Chemistry Research, 36(3), 784-793. doi:10.1021/ie960529y es_ES
dc.description.references Lu, J.-G., Zheng, Y.-F., & Cheng, M.-D. (2008). Wetting mechanism in mass transfer process of hydrophobic membrane gas absorption. Journal of Membrane Science, 308(1-2), 180-190. doi:10.1016/j.memsci.2007.09.051 es_ES
dc.description.references Wickramasinghe, S. R., Semmens, M. J., & Cussler, E. L. (1993). Hollow fiber modules made with hollow fiber fabric. Journal of Membrane Science, 84(1-2), 1-14. doi:10.1016/0376-7388(93)85046-y es_ES
dc.description.references Helton, J. C., & Davis, F. J. (2003). Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering & System Safety, 81(1), 23-69. doi:10.1016/s0951-8320(03)00058-9 es_ES
dc.description.references Sin, G., Gernaey, K. V., Neumann, M. B., van Loosdrecht, M. C. M., & Gujer, W. (2009). Uncertainty analysis in WWTP model applications: A critical discussion using an example from design. Water Research, 43(11), 2894-2906. doi:10.1016/j.watres.2009.03.048 es_ES
dc.description.references Merkel, T. C., Bondar, V. I., Nagai, K., Freeman, B. D., & Pinnau, I. (2000). Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). Journal of Polymer Science Part B: Polymer Physics, 38(3), 415-434. doi:10.1002/(sici)1099-0488(20000201)38:3<415::aid-polb8>3.0.co;2-z es_ES
dc.description.references Sanders, D. F., Smith, Z. P., Guo, R., Robeson, L. M., McGrath, J. E., Paul, D. R., & Freeman, B. D. (2013). Energy-efficient polymeric gas separation membranes for a sustainable future: A review. Polymer, 54(18), 4729-4761. doi:10.1016/j.polymer.2013.05.075 es_ES
dc.description.references Robeson, L. M., Smith, Z. P., Freeman, B. D., & Paul, D. R. (2014). Contributions of diffusion and solubility selectivity to the upper bound analysis for glassy gas separation membranes. Journal of Membrane Science, 453, 71-83. doi:10.1016/j.memsci.2013.10.066 es_ES
dc.description.references Zarebska, A., Amor, Á. C., Ciurkot, K., Karring, H., Thygesen, O., Andersen, T. P., … Norddahl, B. (2015). Fouling mitigation in membrane distillation processes during ammonia stripping from pig manure. Journal of Membrane Science, 484, 119-132. doi:10.1016/j.memsci.2015.03.010 es_ES
dc.description.references Chan, R., & Chen, V. (2004). Characterization of protein fouling on membranes: opportunities and challenges. Journal of Membrane Science, 242(1-2), 169-188. doi:10.1016/j.memsci.2004.01.029 es_ES
dc.description.references Robb, W. L. (1968). THIN SILICONE MEMBRANES-THEIR PERMEATION PROPERTIES AND SOME APPLICATIONS. Annals of the New York Academy of Sciences, 146(1 Materials in), 119-137. doi:10.1111/j.1749-6632.1968.tb20277.x es_ES
dc.description.references PINNAU, I., & HE, Z. (2004). Pure- and mixed-gas permeation properties of polydimethylsiloxane for hydrocarbon/methane and hydrocarbon/hydrogen separation. Journal of Membrane Science, 244(1-2), 227-233. doi:10.1016/j.memsci.2004.06.055 es_ES
dc.description.references Raharjo, R. D., Freeman, B. D., Paul, D. R., Sarti, G. C., & Sanders, E. S. (2007). Pure and mixed gas CH4 and n-C4H10 permeability and diffusivity in poly(dimethylsiloxane). Journal of Membrane Science, 306(1-2), 75-92. doi:10.1016/j.memsci.2007.08.014 es_ES
dc.description.references Glória, R. M., Motta, T. M., Silva, P. V. O., Costa, P. da, Brandt, E. M. F., Souza, C. L., & Chernicharo, C. A. L. (2016). STRIPPING AND DISSIPATION TECHNIQUES FOR THE REMOVAL OF DISSOLVED GASES FROM ANAEROBIC EFFLUENTS. Brazilian Journal of Chemical Engineering, 33(4), 713-721. doi:10.1590/0104-6632.20160334s20150291 es_ES
dc.description.references Cookney, J., Cartmell, E., Jefferson, B., & McAdam, E. J. (2012). Recovery of methane from anaerobic process effluent using poly-di-methyl-siloxane membrane contactors. Water Science and Technology, 65(4), 604-610. doi:10.2166/wst.2012.897 es_ES
dc.description.references Yang, L., Zeng, S., Chen, J., He, M., & Yang, W. (2010). Operational energy performance assessment system of municipal wastewater treatment plants. Water Science and Technology, 62(6), 1361-1370. doi:10.2166/wst.2010.394 es_ES
dc.description.references Buer, T., & Cumin, J. (2010). MBR module design and operation. Desalination, 250(3), 1073-1077. doi:10.1016/j.desal.2009.09.111 es_ES
dc.description.references Krzeminski, P., van der Graaf, J. H. J. M., & van Lier, J. B. (2012). Specific energy consumption of membrane bioreactor (MBR) for sewage treatment. Water Science and Technology, 65(2), 380-392. doi:10.2166/wst.2012.861 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem