Mostrar el registro sencillo del ítem
dc.contributor.author | Gonzalez-Camejo, Josue | es_ES |
dc.contributor.author | Montero, P. | es_ES |
dc.contributor.author | Aparicio, S. | es_ES |
dc.contributor.author | Ruano, M. V. | es_ES |
dc.contributor.author | Borras, L. | es_ES |
dc.contributor.author | Seco, A. | es_ES |
dc.contributor.author | Barat, Ramón | es_ES |
dc.date.accessioned | 2021-02-18T04:32:15Z | |
dc.date.available | 2021-02-18T04:32:15Z | |
dc.date.issued | 2020-04-01 | es_ES |
dc.identifier.issn | 0043-1354 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161700 | |
dc.description.abstract | [EN] Outdoor microalgae cultivation systems treating anaerobic membrane bioreactor (AnMBR) effluents usually present ammonium oxidising bacteria (AOB) competition with microalgae for ammonium uptake, which can cause nitrite accumulation. In literature, nitrite effects over microalgae have shown controversial results. The present study evaluates the nitrite inhibition role in a microalgae-nitrifying bacteria culture. For this purpose, pilot- and lab-scale assays were carried out. During the continuous outdoor operation of the membrane photobioreactor (MPBR) plant, biomass retention time (BRT) of 2 d favoured AOB activity, which caused nitrite accumulation. This nitrite was confirmed to inhibit microalgae performance. Specifically, continuous 5-d lab-scale assays showed a reduction in the nitrogen recovery efficiency by 32, 42 and 80% when nitrite concentration in the culture accounted for 5, 10 and 20 mg N.L-1, respectively. On the contrary, short 30-min exposure to nitrite showed no significant differences in the photosynthetic activity of microalgae under nitrite concentrations of 0, 5, 10 and 20 mg N.L-1. On the other hand, when the MPBR plant was operated at 2.5-d BRT, the nitrite concentration was reduced to negligible values due to increasing activity of microalgae and nitrite oxidising bacteria (NOB). This allowed obtaining maximum MPBR performance; i.e. nitrogen recovery rate (NRR) and biomass productivity of 19.7 +/- 3.3 mg N.L-1.d(-1) and 139 +/- 35 mg VSS.L-1.d(-1), respectively; while nitrification rate (NOxR) reached the lowest value (13.5 +/- 3.4 mg N.L-1.d(-1)). Long BRT of 4.5 d favoured NOB growth, avoiding nitrite inhibition. However, it implied a decrease in microalgae growth and the accumulation of nitrate in the MPBR effluent. Hence, it seems that optimum BRT has to be within the range 2-4.5 d in order to favour microalgae growth with respect to AOB and NOB. (C) 2020 Elsevier Ltd. All rights reserved. | es_ES |
dc.description.sponsorship | This research work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO, Projects CTM2014-54980-C2-1-R and CTM2014-54980-C2-2-R) jointly with the European Regional Development Fund (ERDF), both of which are gratefully acknowledged. It was also supported by the Spanish Ministry of Education, Culture and Sport via a pre-doctoral FPU fellowship to authors J. Gonzalez-Camejo (FPU14/05082) and S. Aparicio (FPU/15/02595) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Water Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Ammonium oxidising bacteria | es_ES |
dc.subject | Microalgae | es_ES |
dc.subject | Nitrite | es_ES |
dc.subject | Outdoor | es_ES |
dc.subject | Wastewater | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.subject.classification | TECNOLOGIA DEL MEDIO AMBIENTE | es_ES |
dc.title | Nitrite inhibition of microalgae induced by the competition between microalgae and nitrifying bacteria | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.watres.2020.115499 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-1-R/ES/OBTENCION DE BIONUTRIENTES Y ENERGIA DEL AGUA RESIDUAL URBANA MEDIANTE CULTIVO DE MICROALGAS, TRATAMIENTOS ANAEROBIOS, CRISTALIZACION DE FOSFORO, ABSORCION DE NH3 Y COMPOSTAJE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU15%2F02595/ES/FPU15%2F02595/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU14%2F05082/ES/FPU14%2F05082/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTM2011-28595-C02-01/ES/MODELACION Y CONTROL DE LA RECUPERACION COMO BIOGAS DE LA ENERGIA DE LA MATERIA ORGANICA Y NUTRIENTES DEL AGUA RESIDUAL, ACOPLANDO UN ANBRM Y UN CULTIVO DE MICROALGAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-2-R/ES/DESARROLLO DE UN SISTEMA DE CONTROL Y DE SOPORTE A LA DECISION PARA LA OBTENCION DE BIONUTRIENTES Y ENERGIA EN PROCESOS DE TRATAMIENTO DE AGUAS RESIDUALES URBANAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Gonzalez-Camejo, J.; Montero, P.; Aparicio, S.; Ruano, MV.; Borras, L.; Seco, A.; Barat, R. (2020). Nitrite inhibition of microalgae induced by the competition between microalgae and nitrifying bacteria. Water Research. 172:1-10. https://doi.org/10.1016/j.watres.2020.115499 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.watres.2020.115499 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 172 | es_ES |
dc.identifier.pmid | 31978839 | es_ES |
dc.relation.pasarela | S\400642 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Abe, K., Imamaki, A., & Hirano, M. (2002). Journal of Applied Phycology, 14(2), 129-134. doi:10.1023/a:1019599216554 | es_ES |
dc.description.references | Admiraal, W. (1977). Tolerance of estuarine benthic diatoms to high concentrations of ammonia, nitrite ion, nitrate ion and orthophosphate. Marine Biology, 43(4), 307-315. doi:10.1007/bf00396925 | es_ES |
dc.description.references | Akizuki, S., Cuevas-Rodríguez, G., & Toda, T. (2019). Microalgal-nitrifying bacterial consortium for energy-saving ammonia removal from anaerobic digestate of slaughterhouse wastewater. Journal of Water Process Engineering, 31, 100753. doi:10.1016/j.jwpe.2019.01.014 | es_ES |
dc.description.references | Almeida, J. S., Júlio, S. M., Reis, M. A. M., & Carrondo, M. J. T. (1995). Nitrite inhibition of denitrification byPseudomonas fluorescens. Biotechnology and Bioengineering, 46(3), 194-201. doi:10.1002/bit.260460303 | es_ES |
dc.description.references | Blackburne, R., Vadivelu, V. M., Yuan, Z., & Keller, J. (2007). Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter. Water Research, 41(14), 3033-3042. doi:10.1016/j.watres.2007.01.043 | es_ES |
dc.description.references | Eze, V. C., Velasquez-Orta, S. B., Hernández-García, A., Monje-Ramírez, I., & Orta-Ledesma, M. T. (2018). Kinetic modelling of microalgae cultivation for wastewater treatment and carbon dioxide sequestration. Algal Research, 32, 131-141. doi:10.1016/j.algal.2018.03.015 | es_ES |
dc.description.references | Fernández-Sevilla, J. M., Brindley, C., Jiménez-Ruíz, N., & Acién, F. G. (2018). A simple equation to quantify the effect of frequency of light/dark cycles on the photosynthetic response of microalgae under intermittent light. Algal Research, 35, 479-487. doi:10.1016/j.algal.2018.09.026 | es_ES |
dc.description.references | Galès, A., Bonnafous, A., Carré, C., Jauzein, V., Lanouguère, E., Le Floc’h, E., … Fouilland, E. (2019). Importance of ecological interactions during wastewater treatment using High Rate Algal Ponds under different temperate climates. Algal Research, 40, 101508. doi:10.1016/j.algal.2019.101508 | es_ES |
dc.description.references | Gonçalves, A. L., Pires, J. C. M., & Simões, M. (2017). A review on the use of microalgal consortia for wastewater treatment. Algal Research, 24, 403-415. doi:10.1016/j.algal.2016.11.008 | es_ES |
dc.description.references | González-Camejo, J., Barat, R., Aguado, D., & Ferrer, J. (2020). Continuous 3-year outdoor operation of a flat-panel membrane photobioreactor to treat effluent from an anaerobic membrane bioreactor. Water Research, 169, 115238. doi:10.1016/j.watres.2019.115238 | es_ES |
dc.description.references | González-Camejo, J., Aparicio, S., Ruano, M. V., Borrás, L., Barat, R., & Ferrer, J. (2019). Effect of ambient temperature variations on an indigenous microalgae-nitrifying bacteria culture dominated by Chlorella. Bioresource Technology, 290, 121788. doi:10.1016/j.biortech.2019.121788 | es_ES |
dc.description.references | González-Camejo, J., Barat, R., Ruano, M. V., Seco, A., & Ferrer, J. (2018). Outdoor flat-panel membrane photobioreactor to treat the effluent of an anaerobic membrane bioreactor. Influence of operating, design, and environmental conditions. Water Science and Technology, 78(1), 195-206. doi:10.2166/wst.2018.259 | es_ES |
dc.description.references | Gupta, S., Pawar, S. B., & Pandey, R. A. (2019). Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries. Science of The Total Environment, 687, 1107-1126. doi:10.1016/j.scitotenv.2019.06.115 | es_ES |
dc.description.references | Kwon, G., Kim, H., Song, C., & Jahng, D. (2019). Co-culture of microalgae and enriched nitrifying bacteria for energy-efficient nitrification. Biochemical Engineering Journal, 152, 107385. doi:10.1016/j.bej.2019.107385 | es_ES |
dc.description.references | Luo, Y., Le-Clech, P., & Henderson, R. K. (2018). Assessment of membrane photobioreactor (MPBR) performance parameters and operating conditions. Water Research, 138, 169-180. doi:10.1016/j.watres.2018.03.050 | es_ES |
dc.description.references | Marazzi, F., Bellucci, M., Rossi, S., Fornaroli, R., Ficara, E., & Mezzanotte, V. (2019). Outdoor pilot trial integrating a sidestream microalgae process for the treatment of centrate under non optimal climate conditions. Algal Research, 39, 101430. doi:10.1016/j.algal.2019.101430 | es_ES |
dc.description.references | Marcilhac, C., Sialve, B., Pourcher, A.-M., Ziebal, C., Bernet, N., & Béline, F. (2014). Digestate color and light intensity affect nutrient removal and competition phenomena in a microalgal-bacterial ecosystem. Water Research, 64, 278-287. doi:10.1016/j.watres.2014.07.012 | es_ES |
dc.description.references | Molinuevo-Salces, B., García-González, M. C., & González-Fernández, C. (2010). Performance comparison of two photobioreactors configurations (open and closed to the atmosphere) treating anaerobically degraded swine slurry. Bioresource Technology, 101(14), 5144-5149. doi:10.1016/j.biortech.2010.02.006 | es_ES |
dc.description.references | Munz, G., Lubello, C., & Oleszkiewicz, J. A. (2011). Factors affecting the growth rates of ammonium and nitrite oxidizing bacteria. Chemosphere, 83(5), 720-725. doi:10.1016/j.chemosphere.2011.01.058 | es_ES |
dc.description.references | Rada-Ariza, A. M., Fredy, D., Lopez-Vazquez, C. M., Van der Steen, N. P., & Lens, P. N. L. (2019). Ammonium removal mechanisms in a microalgal-bacterial sequencing-batch photobioreactor at different solids retention times. Algal Research, 39, 101468. doi:10.1016/j.algal.2019.101468 | es_ES |
dc.description.references | Rossi, S., Bellucci, M., Marazzi, F., Mezzanotte, V., & Ficara, E. (2018). Activity assessment of microalgal-bacterial consortia based on respirometric tests. Water Science and Technology, 78(1), 207-215. doi:10.2166/wst.2018.078 | es_ES |
dc.description.references | Ruiz-Martinez, A., Martin Garcia, N., Romero, I., Seco, A., & Ferrer, J. (2012). Microalgae cultivation in wastewater: Nutrient removal from anaerobic membrane bioreactor effluent. Bioresource Technology, 126, 247-253. doi:10.1016/j.biortech.2012.09.022 | es_ES |
dc.description.references | Santos, F. M., & Pires, J. C. M. (2018). Nutrient recovery from wastewaters by microalgae and its potential application as bio-char. Bioresource Technology, 267, 725-731. doi:10.1016/j.biortech.2018.07.119 | es_ES |
dc.description.references | Seco, A., Aparicio, S., González-Camejo, J., Jiménez-Benítez, A., Mateo, O., Mora, J. F., … Ferrer, J. (2018). Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Science and Technology, 78(9), 1925-1936. doi:10.2166/wst.2018.492 | es_ES |
dc.description.references | Sijbesma, W. F. H., Almeida, J. S., Reis, M. A. M., & Santos, H. (1996). Uncoupling effect of nitrite during denitrification byPseudomonas fluorescens: An in vivo31P-NMR study. Biotechnology and Bioengineering, 52(1), 176-182. doi:10.1002/(sici)1097-0290(19961005)52:1<176::aid-bit18>3.0.co;2-m | es_ES |
dc.description.references | Shoener, B. D., Schramm, S. M., Béline, F., Bernard, O., Martínez, C., Plósz, B. G., … Guest, J. S. (2019). Microalgae and cyanobacteria modeling in water resource recovery facilities: A critical review. Water Research X, 2, 100024. doi:10.1016/j.wroa.2018.100024 | es_ES |
dc.description.references | Vergara, C., Muñoz, R., Campos, J. L., Seeger, M., & Jeison, D. (2016). Influence of light intensity on bacterial nitrifying activity in algal-bacterial photobioreactors and its implications for microalgae-based wastewater treatment. International Biodeterioration & Biodegradation, 114, 116-121. doi:10.1016/j.ibiod.2016.06.006 | es_ES |
dc.description.references | Whitton, R., Le Mével, A., Pidou, M., Ometto, F., Villa, R., & Jefferson, B. (2016). Influence of microalgal N and P composition on wastewater nutrient remediation. Water Research, 91, 371-378. doi:10.1016/j.watres.2015.12.054 | es_ES |
dc.description.references | Winkler, M. K., & Straka, L. (2019). New directions in biological nitrogen removal and recovery from wastewater. Current Opinion in Biotechnology, 57, 50-55. doi:10.1016/j.copbio.2018.12.007 | es_ES |
dc.description.references | Yang, S., Wang, J., Cong, W., Cai, Z., & Ouyang, F. (2004). Utilization of Nitrite as a Nitrogen Source by Botryococcus Braunii. Biotechnology Letters, 26(3), 239-243. doi:10.1023/b:bile.0000013722.45527.18 | es_ES |
dc.subject.ods | 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos | es_ES |