- -

Nitrite inhibition of microalgae induced by the competition between microalgae and nitrifying bacteria

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nitrite inhibition of microalgae induced by the competition between microalgae and nitrifying bacteria

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gonzalez-Camejo, Josue es_ES
dc.contributor.author Montero, P. es_ES
dc.contributor.author Aparicio, S. es_ES
dc.contributor.author Ruano, M. V. es_ES
dc.contributor.author Borras, L. es_ES
dc.contributor.author Seco, A. es_ES
dc.contributor.author Barat, Ramón es_ES
dc.date.accessioned 2021-02-18T04:32:15Z
dc.date.available 2021-02-18T04:32:15Z
dc.date.issued 2020-04-01 es_ES
dc.identifier.issn 0043-1354 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161700
dc.description.abstract [EN] Outdoor microalgae cultivation systems treating anaerobic membrane bioreactor (AnMBR) effluents usually present ammonium oxidising bacteria (AOB) competition with microalgae for ammonium uptake, which can cause nitrite accumulation. In literature, nitrite effects over microalgae have shown controversial results. The present study evaluates the nitrite inhibition role in a microalgae-nitrifying bacteria culture. For this purpose, pilot- and lab-scale assays were carried out. During the continuous outdoor operation of the membrane photobioreactor (MPBR) plant, biomass retention time (BRT) of 2 d favoured AOB activity, which caused nitrite accumulation. This nitrite was confirmed to inhibit microalgae performance. Specifically, continuous 5-d lab-scale assays showed a reduction in the nitrogen recovery efficiency by 32, 42 and 80% when nitrite concentration in the culture accounted for 5, 10 and 20 mg N.L-1, respectively. On the contrary, short 30-min exposure to nitrite showed no significant differences in the photosynthetic activity of microalgae under nitrite concentrations of 0, 5, 10 and 20 mg N.L-1. On the other hand, when the MPBR plant was operated at 2.5-d BRT, the nitrite concentration was reduced to negligible values due to increasing activity of microalgae and nitrite oxidising bacteria (NOB). This allowed obtaining maximum MPBR performance; i.e. nitrogen recovery rate (NRR) and biomass productivity of 19.7 +/- 3.3 mg N.L-1.d(-1) and 139 +/- 35 mg VSS.L-1.d(-1), respectively; while nitrification rate (NOxR) reached the lowest value (13.5 +/- 3.4 mg N.L-1.d(-1)). Long BRT of 4.5 d favoured NOB growth, avoiding nitrite inhibition. However, it implied a decrease in microalgae growth and the accumulation of nitrate in the MPBR effluent. Hence, it seems that optimum BRT has to be within the range 2-4.5 d in order to favour microalgae growth with respect to AOB and NOB. (C) 2020 Elsevier Ltd. All rights reserved. es_ES
dc.description.sponsorship This research work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO, Projects CTM2014-54980-C2-1-R and CTM2014-54980-C2-2-R) jointly with the European Regional Development Fund (ERDF), both of which are gratefully acknowledged. It was also supported by the Spanish Ministry of Education, Culture and Sport via a pre-doctoral FPU fellowship to authors J. Gonzalez-Camejo (FPU14/05082) and S. Aparicio (FPU/15/02595) es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Water Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Ammonium oxidising bacteria es_ES
dc.subject Microalgae es_ES
dc.subject Nitrite es_ES
dc.subject Outdoor es_ES
dc.subject Wastewater es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Nitrite inhibition of microalgae induced by the competition between microalgae and nitrifying bacteria es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.watres.2020.115499 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-1-R/ES/OBTENCION DE BIONUTRIENTES Y ENERGIA DEL AGUA RESIDUAL URBANA MEDIANTE CULTIVO DE MICROALGAS, TRATAMIENTOS ANAEROBIOS, CRISTALIZACION DE FOSFORO, ABSORCION DE NH3 Y COMPOSTAJE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU15%2F02595/ES/FPU15%2F02595/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU14%2F05082/ES/FPU14%2F05082/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTM2011-28595-C02-01/ES/MODELACION Y CONTROL DE LA RECUPERACION COMO BIOGAS DE LA ENERGIA DE LA MATERIA ORGANICA Y NUTRIENTES DEL AGUA RESIDUAL, ACOPLANDO UN ANBRM Y UN CULTIVO DE MICROALGAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-2-R/ES/DESARROLLO DE UN SISTEMA DE CONTROL Y DE SOPORTE A LA DECISION PARA LA OBTENCION DE BIONUTRIENTES Y ENERGIA EN PROCESOS DE TRATAMIENTO DE AGUAS RESIDUALES URBANAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Gonzalez-Camejo, J.; Montero, P.; Aparicio, S.; Ruano, MV.; Borras, L.; Seco, A.; Barat, R. (2020). Nitrite inhibition of microalgae induced by the competition between microalgae and nitrifying bacteria. Water Research. 172:1-10. https://doi.org/10.1016/j.watres.2020.115499 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.watres.2020.115499 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 172 es_ES
dc.identifier.pmid 31978839 es_ES
dc.relation.pasarela S\400642 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Abe, K., Imamaki, A., & Hirano, M. (2002). Journal of Applied Phycology, 14(2), 129-134. doi:10.1023/a:1019599216554 es_ES
dc.description.references Admiraal, W. (1977). Tolerance of estuarine benthic diatoms to high concentrations of ammonia, nitrite ion, nitrate ion and orthophosphate. Marine Biology, 43(4), 307-315. doi:10.1007/bf00396925 es_ES
dc.description.references Akizuki, S., Cuevas-Rodríguez, G., & Toda, T. (2019). Microalgal-nitrifying bacterial consortium for energy-saving ammonia removal from anaerobic digestate of slaughterhouse wastewater. Journal of Water Process Engineering, 31, 100753. doi:10.1016/j.jwpe.2019.01.014 es_ES
dc.description.references Almeida, J. S., Júlio, S. M., Reis, M. A. M., & Carrondo, M. J. T. (1995). Nitrite inhibition of denitrification byPseudomonas fluorescens. Biotechnology and Bioengineering, 46(3), 194-201. doi:10.1002/bit.260460303 es_ES
dc.description.references Blackburne, R., Vadivelu, V. M., Yuan, Z., & Keller, J. (2007). Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter. Water Research, 41(14), 3033-3042. doi:10.1016/j.watres.2007.01.043 es_ES
dc.description.references Eze, V. C., Velasquez-Orta, S. B., Hernández-García, A., Monje-Ramírez, I., & Orta-Ledesma, M. T. (2018). Kinetic modelling of microalgae cultivation for wastewater treatment and carbon dioxide sequestration. Algal Research, 32, 131-141. doi:10.1016/j.algal.2018.03.015 es_ES
dc.description.references Fernández-Sevilla, J. M., Brindley, C., Jiménez-Ruíz, N., & Acién, F. G. (2018). A simple equation to quantify the effect of frequency of light/dark cycles on the photosynthetic response of microalgae under intermittent light. Algal Research, 35, 479-487. doi:10.1016/j.algal.2018.09.026 es_ES
dc.description.references Galès, A., Bonnafous, A., Carré, C., Jauzein, V., Lanouguère, E., Le Floc’h, E., … Fouilland, E. (2019). Importance of ecological interactions during wastewater treatment using High Rate Algal Ponds under different temperate climates. Algal Research, 40, 101508. doi:10.1016/j.algal.2019.101508 es_ES
dc.description.references Gonçalves, A. L., Pires, J. C. M., & Simões, M. (2017). A review on the use of microalgal consortia for wastewater treatment. Algal Research, 24, 403-415. doi:10.1016/j.algal.2016.11.008 es_ES
dc.description.references González-Camejo, J., Barat, R., Aguado, D., & Ferrer, J. (2020). Continuous 3-year outdoor operation of a flat-panel membrane photobioreactor to treat effluent from an anaerobic membrane bioreactor. Water Research, 169, 115238. doi:10.1016/j.watres.2019.115238 es_ES
dc.description.references González-Camejo, J., Aparicio, S., Ruano, M. V., Borrás, L., Barat, R., & Ferrer, J. (2019). Effect of ambient temperature variations on an indigenous microalgae-nitrifying bacteria culture dominated by Chlorella. Bioresource Technology, 290, 121788. doi:10.1016/j.biortech.2019.121788 es_ES
dc.description.references González-Camejo, J., Barat, R., Ruano, M. V., Seco, A., & Ferrer, J. (2018). Outdoor flat-panel membrane photobioreactor to treat the effluent of an anaerobic membrane bioreactor. Influence of operating, design, and environmental conditions. Water Science and Technology, 78(1), 195-206. doi:10.2166/wst.2018.259 es_ES
dc.description.references Gupta, S., Pawar, S. B., & Pandey, R. A. (2019). Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries. Science of The Total Environment, 687, 1107-1126. doi:10.1016/j.scitotenv.2019.06.115 es_ES
dc.description.references Kwon, G., Kim, H., Song, C., & Jahng, D. (2019). Co-culture of microalgae and enriched nitrifying bacteria for energy-efficient nitrification. Biochemical Engineering Journal, 152, 107385. doi:10.1016/j.bej.2019.107385 es_ES
dc.description.references Luo, Y., Le-Clech, P., & Henderson, R. K. (2018). Assessment of membrane photobioreactor (MPBR) performance parameters and operating conditions. Water Research, 138, 169-180. doi:10.1016/j.watres.2018.03.050 es_ES
dc.description.references Marazzi, F., Bellucci, M., Rossi, S., Fornaroli, R., Ficara, E., & Mezzanotte, V. (2019). Outdoor pilot trial integrating a sidestream microalgae process for the treatment of centrate under non optimal climate conditions. Algal Research, 39, 101430. doi:10.1016/j.algal.2019.101430 es_ES
dc.description.references Marcilhac, C., Sialve, B., Pourcher, A.-M., Ziebal, C., Bernet, N., & Béline, F. (2014). Digestate color and light intensity affect nutrient removal and competition phenomena in a microalgal-bacterial ecosystem. Water Research, 64, 278-287. doi:10.1016/j.watres.2014.07.012 es_ES
dc.description.references Molinuevo-Salces, B., García-González, M. C., & González-Fernández, C. (2010). Performance comparison of two photobioreactors configurations (open and closed to the atmosphere) treating anaerobically degraded swine slurry. Bioresource Technology, 101(14), 5144-5149. doi:10.1016/j.biortech.2010.02.006 es_ES
dc.description.references Munz, G., Lubello, C., & Oleszkiewicz, J. A. (2011). Factors affecting the growth rates of ammonium and nitrite oxidizing bacteria. Chemosphere, 83(5), 720-725. doi:10.1016/j.chemosphere.2011.01.058 es_ES
dc.description.references Rada-Ariza, A. M., Fredy, D., Lopez-Vazquez, C. M., Van der Steen, N. P., & Lens, P. N. L. (2019). Ammonium removal mechanisms in a microalgal-bacterial sequencing-batch photobioreactor at different solids retention times. Algal Research, 39, 101468. doi:10.1016/j.algal.2019.101468 es_ES
dc.description.references Rossi, S., Bellucci, M., Marazzi, F., Mezzanotte, V., & Ficara, E. (2018). Activity assessment of microalgal-bacterial consortia based on respirometric tests. Water Science and Technology, 78(1), 207-215. doi:10.2166/wst.2018.078 es_ES
dc.description.references Ruiz-Martinez, A., Martin Garcia, N., Romero, I., Seco, A., & Ferrer, J. (2012). Microalgae cultivation in wastewater: Nutrient removal from anaerobic membrane bioreactor effluent. Bioresource Technology, 126, 247-253. doi:10.1016/j.biortech.2012.09.022 es_ES
dc.description.references Santos, F. M., & Pires, J. C. M. (2018). Nutrient recovery from wastewaters by microalgae and its potential application as bio-char. Bioresource Technology, 267, 725-731. doi:10.1016/j.biortech.2018.07.119 es_ES
dc.description.references Seco, A., Aparicio, S., González-Camejo, J., Jiménez-Benítez, A., Mateo, O., Mora, J. F., … Ferrer, J. (2018). Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Science and Technology, 78(9), 1925-1936. doi:10.2166/wst.2018.492 es_ES
dc.description.references Sijbesma, W. F. H., Almeida, J. S., Reis, M. A. M., & Santos, H. (1996). Uncoupling effect of nitrite during denitrification byPseudomonas fluorescens: An in vivo31P-NMR study. Biotechnology and Bioengineering, 52(1), 176-182. doi:10.1002/(sici)1097-0290(19961005)52:1<176::aid-bit18>3.0.co;2-m es_ES
dc.description.references Shoener, B. D., Schramm, S. M., Béline, F., Bernard, O., Martínez, C., Plósz, B. G., … Guest, J. S. (2019). Microalgae and cyanobacteria modeling in water resource recovery facilities: A critical review. Water Research X, 2, 100024. doi:10.1016/j.wroa.2018.100024 es_ES
dc.description.references Vergara, C., Muñoz, R., Campos, J. L., Seeger, M., & Jeison, D. (2016). Influence of light intensity on bacterial nitrifying activity in algal-bacterial photobioreactors and its implications for microalgae-based wastewater treatment. International Biodeterioration & Biodegradation, 114, 116-121. doi:10.1016/j.ibiod.2016.06.006 es_ES
dc.description.references Whitton, R., Le Mével, A., Pidou, M., Ometto, F., Villa, R., & Jefferson, B. (2016). Influence of microalgal N and P composition on wastewater nutrient remediation. Water Research, 91, 371-378. doi:10.1016/j.watres.2015.12.054 es_ES
dc.description.references Winkler, M. K., & Straka, L. (2019). New directions in biological nitrogen removal and recovery from wastewater. Current Opinion in Biotechnology, 57, 50-55. doi:10.1016/j.copbio.2018.12.007 es_ES
dc.description.references Yang, S., Wang, J., Cong, W., Cai, Z., & Ouyang, F. (2004). Utilization of Nitrite as a Nitrogen Source by Botryococcus Braunii. Biotechnology Letters, 26(3), 239-243. doi:10.1023/b:bile.0000013722.45527.18 es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem