Mostrar el registro sencillo del ítem
dc.contributor.author | Garrido-García, Eva María | es_ES |
dc.contributor.author | Alfonso-Navarro, María | es_ES |
dc.contributor.author | Díaz de Greñu-Puertas, Borja | es_ES |
dc.contributor.author | Marcos Martínez, María Dolores | es_ES |
dc.contributor.author | Costero, Ana M. | es_ES |
dc.contributor.author | Gil Grau, Salvador | es_ES |
dc.contributor.author | Sancenón Galarza, Félix | es_ES |
dc.contributor.author | Martínez-Máñez, Ramón | es_ES |
dc.date.accessioned | 2021-02-19T04:33:19Z | |
dc.date.available | 2021-02-19T04:33:19Z | |
dc.date.issued | 2020-09-25 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161838 | |
dc.description.abstract | [EN] A bio-inspired nanodevice for the selective and sensitive fluorogenic detection of 3,4- methylenedioxypyrovalerone (MDPV), usually known as Cannibal drug, is reported. The sensing nanodevice is based on mesoporous silica nanoparticles (MSNs), loaded with a fluorescent reporter (rhodamine B) and functionalized on their external surface with a dopamine derivative (3), which specifically interacts with the recombinant human dopamine transporter (DAT), capping the pores. In the presence of MDPV, DAT detaches from the MSNs consequently causing rhodamine B release and allowing drug detection. The nanosensor shows a detection limit of 5.2 µM and it is able to detect the MDPV drug both in saliva and blood plasma samples. | es_ES |
dc.description.sponsorship | The authors thank the Spanish Government (projects RTI2018-100910-B-C41 (MCUI/AEI/FEDER, UE) and CTQ2017-87954-P) and the Generalitat Valencia (PROMETEO/2018/024) for support. E.G. is grateful to the Spanish MEC for her FPU grant. M.A. thanks her postdoctoral fellowship (PAID -10-17). The authors also thank the Electron Microscopy Service at the UPV for support. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Chemical Society | es_ES |
dc.relation.ispartof | ACS Sensors | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nanosensor | es_ES |
dc.subject | Mesoporous silica nanoparticles | es_ES |
dc.subject | MDPV | es_ES |
dc.subject | Cannibal drug | es_ES |
dc.subject | Recombinant human dopamine transporter (DAT) | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.title | A sensitive nanosensor for the in situ detection of the cannibal drug | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1021/acssensors.0c01553 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-10-17/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-87954-P/ES/NANOMAQUINAS INTELIGENTES BASADAS EN NANOMATERIALES JANUS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Garrido-García, EM.; Alfonso-Navarro, M.; Díaz De Greñu-Puertas, B.; Marcos Martínez, MD.; Costero, AM.; Gil Grau, S.; Sancenón Galarza, F.... (2020). A sensitive nanosensor for the in situ detection of the cannibal drug. ACS Sensors. 5(9):2966-2972. https://doi.org/10.1021/acssensors.0c01553 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1021/acssensors.0c01553 | es_ES |
dc.description.upvformatpinicio | 2966 | es_ES |
dc.description.upvformatpfin | 2972 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 5 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.eissn | 2379-3694 | es_ES |
dc.identifier.pmid | 32844649 | es_ES |
dc.relation.pasarela | S\417524 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.description.references | World drug report United Nations Office on Drugs and Crime (UNODC). Inform; 2019. | es_ES |
dc.description.references | European drug report Trends and Developments. European Monitoring Centre for Drugs and Drug Addition (EMCDDA). Inform; 2019. | es_ES |
dc.description.references | Zawilska, J. B., & Wojcieszak, J. (2013). Designer cathinones—An emerging class of novel recreational drugs. Forensic Science International, 231(1-3), 42-53. doi:10.1016/j.forsciint.2013.04.015 | es_ES |
dc.description.references | Coppola, M., & Mondola, R. (2012). 3,4-Methylenedioxypyrovalerone (MDPV): Chemistry, pharmacology and toxicology of a new designer drug of abuse marketed online. Toxicology Letters, 208(1), 12-15. doi:10.1016/j.toxlet.2011.10.002 | es_ES |
dc.description.references | Coppola, M., & Mondola, R. (2012). Synthetic cathinones: Chemistry, pharmacology and toxicology of a new class of designer drugs of abuse marketed as «bath salts» or «plant food». Toxicology Letters, 211(2), 144-149. doi:10.1016/j.toxlet.2012.03.009 | es_ES |
dc.description.references | Oliver, C. F., Palamar, J. J., Salomone, A., Simmons, S. J., Philogene-Khalid, H. L., Stokes-McCloskey, N., & Rawls, S. M. (2018). Synthetic cathinone adulteration of illegal drugs. Psychopharmacology, 236(3), 869-879. doi:10.1007/s00213-018-5066-6 | es_ES |
dc.description.references | Riley, A. L., Nelson, K. H., To, P., López-Arnau, R., Xu, P., Wang, D., … Hall, F. S. (2020). Abuse potential and toxicity of the synthetic cathinones (i.e., «Bath salts»). Neuroscience & Biobehavioral Reviews, 110, 150-173. doi:10.1016/j.neubiorev.2018.07.015 | es_ES |
dc.description.references | Ibáñez, M., Pozo, Ó. J., Sancho, J. V., Orengo, T., Haro, G., & Hernández, F. (2015). Analytical strategy to investigate 3,4-methylenedioxypyrovalerone (MDPV) metabolites in consumers’ urine by high-resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 408(1), 151-164. doi:10.1007/s00216-015-9088-1 | es_ES |
dc.description.references | Colon-Perez, L. M., Pino, J. A., Saha, K., Pompilus, M., Kaplitz, S., Choudhury, N., … Febo, M. (2018). Functional connectivity, behavioral and dopaminergic alterations 24 hours following acute exposure to synthetic bath salt drug methylenedioxypyrovalerone. Neuropharmacology, 137, 178-193. doi:10.1016/j.neuropharm.2018.04.031 | es_ES |
dc.description.references | Eshleman, A. J., Nagarajan, S., Wolfrum, K. M., Reed, J. F., Swanson, T. L., Nilsen, A., & Janowsky, A. (2018). Structure-activity relationships of bath salt components: substituted cathinones and benzofurans at biogenic amine transporters. Psychopharmacology, 236(3), 939-952. doi:10.1007/s00213-018-5059-5 | es_ES |
dc.description.references | Glennon, R. A., & Young, R. (2016). Neurobiology of 3,4-methylenedioxypyrovalerone (MDPV) and α-pyrrolidinovalerophenone (α-PVP). Brain Research Bulletin, 126, 111-126. doi:10.1016/j.brainresbull.2016.04.011 | es_ES |
dc.description.references | Kraemer, M., Boehmer, A., Madea, B., & Maas, A. (2019). Death cases involving certain new psychoactive substances: A review of the literature. Forensic Science International, 298, 186-267. doi:10.1016/j.forsciint.2019.02.021 | es_ES |
dc.description.references | Liveri, K., Constantinou, M. A., Afxentiou, M., & Kanari, P. (2016). A fatal intoxication related to MDPV and pentedrone combined with antipsychotic and antidepressant substances in Cyprus. Forensic Science International, 265, 160-165. doi:10.1016/j.forsciint.2016.02.017 | es_ES |
dc.description.references | Marinetti, L. J., & Antonides, H. M. (2013). Analysis of Synthetic Cathinones Commonly Found in Bath Salts in Human Performance and Postmortem Toxicology: Method Development, Drug Distribution and Interpretation of Results. Journal of Analytical Toxicology, 37(3), 135-146. doi:10.1093/jat/bks136 | es_ES |
dc.description.references | Freni, F., Bianco, S., Vignali, C., Groppi, A., Moretti, M., Osculati, A. M. M., & Morini, L. (2019). A multi-analyte LC–MS/MS method for screening and quantification of 16 synthetic cathinones in hair: Application to postmortem cases. Forensic Science International, 298, 115-120. doi:10.1016/j.forsciint.2019.02.036 | es_ES |
dc.description.references | Peiró, M. de las N., Armenta, S., Garrigues, S., & de la Guardia, M. (2016). Determination of 3,4-methylenedioxypyrovalerone (MDPV) in oral and nasal fluids by ion mobility spectrometry. Analytical and Bioanalytical Chemistry, 408(12), 3265-3273. doi:10.1007/s00216-016-9395-1 | es_ES |
dc.description.references | Cheng, S.-Y., Ng-A-Qui, T., Eng, B., & Ho, J. (2017). Detection of cathinone and mephedrone in plasma by LC-MS/MS using standard addition quantification technique. Journal of Analytical Science and Technology, 8(1). doi:10.1186/s40543-017-0128-7 | es_ES |
dc.description.references | Glicksberg, L., Bryand, K., & Kerrigan, S. (2016). Identification and quantification of synthetic cathinones in blood and urine using liquid chromatography-quadrupole/time of flight (LC-Q/TOF) mass spectrometry. Journal of Chromatography B, 1035, 91-103. doi:10.1016/j.jchromb.2016.09.027 | es_ES |
dc.description.references | Mercieca, G., Odoardi, S., Cassar, M., & Strano Rossi, S. (2018). Rapid and simple procedure for the determination of cathinones, amphetamine-like stimulants and other new psychoactive substances in blood and urine by GC–MS. Journal of Pharmaceutical and Biomedical Analysis, 149, 494-501. doi:10.1016/j.jpba.2017.11.024 | es_ES |
dc.description.references | Gerace, E., Caneparo, D., Borio, F., Salomone, A., & Vincenti, M. (2019). Determination of several synthetic cathinones and an amphetamine‐like compound in urine by gas chromatography with mass spectrometry. Method validation and application to real cases. Journal of Separation Science, 42(8), 1577-1584. doi:10.1002/jssc.201801249 | es_ES |
dc.description.references | Woźniak, M. K., Banaszkiewicz, L., Wiergowski, M., Tomczak, E., Kata, M., Szpiech, B., … Biziuk, M. (2019). Development and validation of a GC–MS/MS method for the determination of 11 amphetamines and 34 synthetic cathinones in whole blood. Forensic Toxicology, 38(1), 42-58. doi:10.1007/s11419-019-00485-y | es_ES |
dc.description.references | Joshi, M., Cetroni, B., Camacho, A., Krueger, C., & Midey, A. J. (2014). Analysis of synthetic cathinones and associated psychoactive substances by ion mobility spectrometry. Forensic Science International, 244, 196-206. doi:10.1016/j.forsciint.2014.08.033 | es_ES |
dc.description.references | Peters, J. R., Keasling, R., Brown, S. D., & Pond, B. B. (2016). Quantification of Synthetic Cathinones in Rat Brain Using HILIC–ESI-MS/MS. Journal of Analytical Toxicology. doi:10.1093/jat/bkw074 | es_ES |
dc.description.references | Williams, M., Martin, J., & Galettis, P. (2017). A Validated Method for the Detection of 32 Bath Salts in Oral Fluid. Journal of Analytical Toxicology, 41(8), 659-669. doi:10.1093/jat/bkx055 | es_ES |
dc.description.references | Diestelmann, M., Zangl, A., Herrle, I., Koch, E., Graw, M., & Paul, L. D. (2018). MDPV in forensic routine cases: Psychotic and aggressive behavior in relation to plasma concentrations. Forensic Science International, 283, 72-84. doi:10.1016/j.forsciint.2017.12.003 | es_ES |
dc.description.references | Garrido, E., Pla, L., Lozano-Torres, B., El Sayed, S., Martínez-Máñez, R., & Sancenón, F. (2018). Chromogenic and Fluorogenic Probes for the Detection of Illicit Drugs. ChemistryOpen, 7(5), 401-428. doi:10.1002/open.201800034 | es_ES |
dc.description.references | García‐Fernández, A., Aznar, E., Martínez‐Máñez, R., & Sancenón, F. (2019). New Advances in In Vivo Applications of Gated Mesoporous Silica as Drug Delivery Nanocarriers. Small, 16(3), 1902242. doi:10.1002/smll.201902242 | es_ES |
dc.description.references | Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348j | es_ES |
dc.description.references | Giménez, C., Climent, E., Aznar, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., … Rurack, K. (2014). Towards Chemical Communication between Gated Nanoparticles. Angewandte Chemie International Edition, n/a-n/a. doi:10.1002/anie.201405580 | es_ES |
dc.description.references | Luis, B., Llopis‐Lorente, A., Rincón, P., Gadea, J., Sancenón, F., Aznar, E., … Martínez‐Máñez, R. (2019). An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms. Angewandte Chemie International Edition, 58(42), 14986-14990. doi:10.1002/anie.201908867 | es_ES |
dc.description.references | Garrido, E., Alfonso, M., Díaz de Greñu, B., Lozano‐Torres, B., Parra, M., Gaviña, P., … Sancenón, F. (2020). Nanosensor for Sensitive Detection of the New Psychedelic Drug 25I‐NBOMe. Chemistry – A European Journal, 26(13), 2813-2816. doi:10.1002/chem.201905688 | es_ES |
dc.description.references | Ribes, À., Aznar, E., Santiago-Felipe, S., Xifre-Perez, E., Tormo-Mas, M. Á., Pemán, J., … Martínez-Máñez, R. (2019). Selective and Sensitive Probe Based in Oligonucleotide-Capped Nanoporous Alumina for the Rapid Screening of Infection Produced by Candida albicans. ACS Sensors, 4(5), 1291-1298. doi:10.1021/acssensors.9b00169 | es_ES |
dc.description.references | Oroval, M., Coll, C., Bernardos, A., Marcos, M. D., Martínez-Máñez, R., Shchukin, D. G., & Sancenón, F. (2017). Selective Fluorogenic Sensing of As(III) Using Aptamer-Capped Nanomaterials. ACS Applied Materials & Interfaces, 9(13), 11332-11336. doi:10.1021/acsami.6b15164 | es_ES |
dc.description.references | Aznar, E., Villalonga, R., Giménez, C., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2013). Glucose-triggered release using enzyme-gated mesoporous silica nanoparticles. Chemical Communications, 49(57), 6391. doi:10.1039/c3cc42210k | es_ES |
dc.description.references | Maerten, C., Garnier, T., Lupattelli, P., Chau, N. T. T., Schaaf, P., Jierry, L., & Boulmedais, F. (2015). Morphogen Electrochemically Triggered Self-Construction of Polymeric Films Based on Mussel-Inspired Chemistry. Langmuir, 31(49), 13385-13393. doi:10.1021/acs.langmuir.5b03774 | es_ES |
dc.description.references | Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., … Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27), 10834-10843. doi:10.1021/ja00053a020 | es_ES |
dc.description.references | Cai, Q., Luo, Z.-S., Pang, W.-Q., Fan, Y.-W., Chen, X.-H., & Cui, F.-Z. (2001). Dilute Solution Routes to Various Controllable Morphologies of MCM-41 Silica with a Basic Medium. Chemistry of Materials, 13(2), 258-263. doi:10.1021/cm990661z | es_ES |
dc.description.references | Debruyne, D., Loilier, M., Cesbron, A., Le Boisselier, R., & Bourgine, J. (2014). Emerging drugs of abuse: current perspectives on substituted cathinones. Substance Abuse and Rehabilitation, 37. doi:10.2147/sar.s37257 | es_ES |
dc.description.references | Marusich, J. A., Antonazzo, K. R., Wiley, J. L., Blough, B. E., Partilla, J. S., & Baumann, M. H. (2014). Pharmacology of novel synthetic stimulants structurally related to the «bath salts» constituent 3,4-methylenedioxypyrovalerone (MDPV). Neuropharmacology, 87, 206-213. doi:10.1016/j.neuropharm.2014.02.016 | es_ES |
dc.description.references | Baumann, M. H., Partilla, J. S., Lehner, K. R., Thorndike, E. B., Hoffman, A. F., Holy, M., … Schindler, C. W. (2012). Powerful Cocaine-Like Actions of 3,4-Methylenedioxypyrovalerone (MDPV), a Principal Constituent of Psychoactive ‘Bath Salts’ Products. Neuropsychopharmacology, 38(4), 552-562. doi:10.1038/npp.2012.204 | es_ES |