Mostrar el registro sencillo del ítem
dc.contributor.author | Puertas Medina, Rosa María | es_ES |
dc.contributor.author | Martí Selva, María Luisa | es_ES |
dc.contributor.author | García Alvarez-Coque, José María | es_ES |
dc.date.accessioned | 2021-02-19T04:33:21Z | |
dc.date.available | 2021-02-19T04:33:21Z | |
dc.date.issued | 2020-05 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161839 | |
dc.description.abstract | [EN] International trade in food knows no borders, hence the need for prevention systems to avoid the consumption of products that are harmful to health. This paper proposes the use of multicriteria risk prevention tools that consider the socioeconomic and institutional conditions of food exporters. We propose the use of three decision-making methods-Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS), Elimination et Choix Traduisant la Realite (ELECTRE), and Cross-Efficiency (CE)-to establish a ranking of countries that export cereals to the European Union, based on structural criteria related to the detection of potential associated risks (notifications, food quality, corruption, environmental sustainability in agriculture, and logistics). In addition, the analysis examines whether the wealth and institutional capacity of supplier countries influence their position in the ranking. The research was carried out biannually over the period from 2012-2016, allowing an assessment to be made of the possible stability of the markets. The results reveal that suppliers' rankings based exclusively on aspects related to food risk differ from importers' actual choices determined by micro/macroeconomic features (price, production volume, and economic growth). The rankings obtained by the three proposed methods are not the same, but present certain similarities, with the ability to discern countries according to their level of food risk. The proposed methodology can be applied to support sourcing strategies. In the future, food safety considerations could have increased influence in importing decisions, which would involve further difficulties for low-income countries. | es_ES |
dc.description.sponsorship | Ministry of Science and Innovation (Spain) and European Commission-ERDF. Project "Strengthening innovation policy in the agri-food sector" (RTI2018-093791-B-C22). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | International Journal of Environmental research and Public Health | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Food safety | es_ES |
dc.subject | Trade | es_ES |
dc.subject | Supply chain | es_ES |
dc.subject | Multicriteria decision analysis | es_ES |
dc.subject.classification | ECONOMIA APLICADA | es_ES |
dc.title | Food Supply without Risk: Multicriteria Analysis of Institutional Conditions of Exporters | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ijerph17103432 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093791-B-C22/ES/FORTALECIENDO LAS POLITICAS DE INNOVACION EN EL SECTOR AGROALIMENTARIO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials | es_ES |
dc.description.bibliographicCitation | Puertas Medina, RM.; Martí Selva, ML.; García Alvarez-Coque, JM. (2020). Food Supply without Risk: Multicriteria Analysis of Institutional Conditions of Exporters. International Journal of Environmental research and Public Health. 17(10):1-21. https://doi.org/10.3390/ijerph17103432 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ijerph17103432 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 21 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 10 | es_ES |
dc.identifier.eissn | 1660-4601 | es_ES |
dc.identifier.pmid | 32423089 | es_ES |
dc.identifier.pmcid | PMC7277195 | es_ES |
dc.relation.pasarela | S\412418 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Walker, E., & Jones, N. (2002). An assessment of the value of documenting food safety in small and less developed catering businesses. Food Control, 13(4-5), 307-314. doi:10.1016/s0956-7135(02)00036-1 | es_ES |
dc.description.references | Sun, Y.-M., & Ockerman, H. W. (2005). A review of the needs and current applications of hazard analysis and critical control point (HACCP) system in foodservice areas. Food Control, 16(4), 325-332. doi:10.1016/j.foodcont.2004.03.012 | es_ES |
dc.description.references | Rohr, J. R., Barrett, C. B., Civitello, D. J., Craft, M. E., Delius, B., DeLeo, G. A., … Tilman, D. (2019). Emerging human infectious diseases and the links to global food production. Nature Sustainability, 2(6), 445-456. doi:10.1038/s41893-019-0293-3 | es_ES |
dc.description.references | De Jonge, J., van Trijp, J. C. M., van der Lans, I. A., Renes, R. J., & Frewer, L. J. (2008). How trust in institutions and organizations builds general consumer confidence in the safety of food: A decomposition of effects. Appetite, 51(2), 311-317. doi:10.1016/j.appet.2008.03.008 | es_ES |
dc.description.references | Neill, C. L., & Holcomb, R. B. (2019). Does a food safety label matter? Consumer heterogeneity and fresh produce risk perceptions under the Food Safety Modernization Act. Food Policy, 85, 7-14. doi:10.1016/j.foodpol.2019.04.001 | es_ES |
dc.description.references | Wood, V. R., & Robertson, K. R. (2000). Evaluating international markets. International Marketing Review, 17(1), 34-55. doi:10.1108/02651330010314704 | es_ES |
dc.description.references | Jouanjean, M.-A., Maur, J.-C., & Shepherd, B. (2015). Reputation matters: Spillover effects for developing countries in the enforcement of US food safety measures. Food Policy, 55, 81-91. doi:10.1016/j.foodpol.2015.06.001 | es_ES |
dc.description.references | Van Ruth, S. M., Huisman, W., & Luning, P. A. (2017). Food fraud vulnerability and its key factors. Trends in Food Science & Technology, 67, 70-75. doi:10.1016/j.tifs.2017.06.017 | es_ES |
dc.description.references | Baylis, K., Nogueira, L., & Pace, K. (2010). Food Import Refusals: Evidence from the European Union. American Journal of Agricultural Economics, 93(2), 566-572. doi:10.1093/ajae/aaq149 | es_ES |
dc.description.references | Bouzembrak, Y., & Marvin, H. J. P. (2016). Prediction of food fraud type using data from Rapid Alert System for Food and Feed (RASFF) and Bayesian network modelling. Food Control, 61, 180-187. doi:10.1016/j.foodcont.2015.09.026 | es_ES |
dc.description.references | Tudela-Marco, L., Garcia-Alvarez-Coque, J. M., & Martí-Selva, L. (2016). Do EU Member States Apply Food Standards Uniformly? A Look at Fruit and Vegetable Safety Notifications. JCMS: Journal of Common Market Studies, 55(2), 387-405. doi:10.1111/jcms.12503 | es_ES |
dc.description.references | Verhaelen, K., Bauer, A., Günther, F., Müller, B., Nist, M., Ülker Celik, B., … Wallner, P. (2018). Anticipation of food safety and fraud issues: ISAR - A new screening tool to monitor food prices and commodity flows. Food Control, 94, 93-101. doi:10.1016/j.foodcont.2018.06.029 | es_ES |
dc.description.references | Garcia‐Alvarez‐Coque, J., Taghouti, I., & Martinez‐Gomez, V. (2020). Changes in Aflatoxin Standards: Implications for EU Border Controls of Nut Imports. Applied Economic Perspectives and Policy, 42(3), 524-541. doi:10.1093/aepp/ppy036 | es_ES |
dc.description.references | Fischer, A. R. H., de Jong, A. E. I., de Jonge, R., Frewer, L. J., & Nauta, M. J. (2005). Improving Food Safety in the Domestic Environment: The Need for a Transdisciplinary Approach. Risk Analysis, 25(3), 503-517. doi:10.1111/j.1539-6924.2005.00618.x | es_ES |
dc.description.references | Houghton, J. R., Rowe, G., Frewer, L. J., Van Kleef, E., Chryssochoidis, G., Kehagia, O., … Strada, A. (2008). The quality of food risk management in Europe: Perspectives and priorities. Food Policy, 33(1), 13-26. doi:10.1016/j.foodpol.2007.05.001 | es_ES |
dc.description.references | Demortain, D. (2012). Enabling global principle-based regulation: The case of risk analysis in the Codex Alimentarius. Regulation & Governance, 6(2), 207-224. doi:10.1111/j.1748-5991.2012.01144.x | es_ES |
dc.description.references | FAZIL, A., RAJIC, A., SANCHEZ, J., & MCEWEN, S. (2008). Choices, Choices: The Application of Multi-Criteria Decision Analysis to a Food Safety Decision-Making Problem. Journal of Food Protection, 71(11), 2323-2333. doi:10.4315/0362-028x-71.11.2323 | es_ES |
dc.description.references | Ruzante, J. M., Davidson, V. J., Caswell, J., Fazil, A., Cranfield, J. A. L., Henson, S. J., … Farber, J. M. (2010). A Multifactorial Risk Prioritization Framework for Foodborne Pathogens. Risk Analysis, 30(5), 724-742. doi:10.1111/j.1539-6924.2009.01278.x | es_ES |
dc.description.references | Mazzocchi, M., Ragona, M., & Zanoli, A. (2013). A fuzzy multi-criteria approach for the ex-ante impact assessment of food safety policies. Food Policy, 38, 177-189. doi:10.1016/j.foodpol.2012.11.011 | es_ES |
dc.description.references | Govindan, K., Kadziński, M., & Sivakumar, R. (2017). Application of a novel PROMETHEE-based method for construction of a group compromise ranking to prioritization of green suppliers in food supply chain. Omega, 71, 129-145. doi:10.1016/j.omega.2016.10.004 | es_ES |
dc.description.references | Segura, M., Maroto, C., & Segura, B. (2019). Quantifying the Sustainability of Products and Suppliers in Food Distribution Companies. Sustainability, 11(21), 5875. doi:10.3390/su11215875 | es_ES |
dc.description.references | Lau, H., Nakandala, D., & Shum, P. K. (2018). A business process decision model for fresh-food supplier evaluation. Business Process Management Journal, 24(3), 716-744. doi:10.1108/bpmj-01-2016-0015 | es_ES |
dc.description.references | Garcia-Alvarez-Coque, J.-M., Abdullateef, O., Fenollosa, L., Ribal, J., Sanjuan, N., & Soriano, J. M. (2020). Integrating sustainability into the multi-criteria assessment of urban dietary patterns. Renewable Agriculture and Food Systems, 36(1), 69-76. doi:10.1017/s174217051900053x | es_ES |
dc.description.references | Grant, W. (2012). Economic patriotism in European agriculture. Journal of European Public Policy, 19(3), 420-434. doi:10.1080/13501763.2011.640797 | es_ES |
dc.description.references | Maye, D., & Kirwan, J. (2013). Food security: A fractured consensus. Journal of Rural Studies, 29, 1-6. doi:10.1016/j.jrurstud.2012.12.001 | es_ES |
dc.description.references | Anthony, R. (2011). Taming the Unruly Side of Ethics: Overcoming Challenges of a Bottom-Up Approach to Ethics in the Areas of Food Policy and Climate Change. Journal of Agricultural and Environmental Ethics, 25(6), 813-841. doi:10.1007/s10806-011-9358-7 | es_ES |
dc.description.references | MacMillan, T., & Dowler, E. (2011). Just and Sustainable? Examining the Rhetoric and Potential Realities of UK Food Security. Journal of Agricultural and Environmental Ethics, 25(2), 181-204. doi:10.1007/s10806-011-9304-8 | es_ES |
dc.description.references | Jaud, M., Cadot, O., & Suwa-Eisenmann, A. (2013). Do food scares explain supplier concentration? An analysis of EU agri-food imports. European Review of Agricultural Economics, 40(5), 873-890. doi:10.1093/erae/jbs038 | es_ES |
dc.description.references | Spink, J., Fortin, N. D., Moyer, D. C., Miao, H., & Wu, Y. (2016). Food Fraud Prevention: Policy, Strategy, and Decision-Making – Implementation Steps for a Government Agency or Industry. CHIMIA International Journal for Chemistry, 70(5), 320-328. doi:10.2533/chimia.2016.320 | es_ES |
dc.description.references | Van Ruth, S. M., Luning, P. A., Silvis, I. C. J., Yang, Y., & Huisman, W. (2018). Differences in fraud vulnerability in various food supply chains and their tiers. Food Control, 84, 375-381. doi:10.1016/j.foodcont.2017.08.020 | es_ES |
dc.description.references | Xidonas, P., & Psarras, J. (2009). Equity portfolio management within the MCDM frame: a literature review. International Journal of Banking, Accounting and Finance, 1(3), 285. doi:10.1504/ijbaaf.2009.022717 | es_ES |
dc.description.references | Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain management – A review. European Journal of Operational Research, 196(2), 401-412. doi:10.1016/j.ejor.2008.05.007 | es_ES |
dc.description.references | Mandic, K., Delibasic, B., Knezevic, S., & Benkovic, S. (2014). Analysis of the financial parameters of Serbian banks through the application of the fuzzy AHP and TOPSIS methods. Economic Modelling, 43, 30-37. doi:10.1016/j.econmod.2014.07.036 | es_ES |
dc.description.references | Uygun, Ö., Kaçamak, H., & Kahraman, Ü. A. (2015). An integrated DEMATEL and Fuzzy ANP techniques for evaluation and selection of outsourcing provider for a telecommunication company. Computers & Industrial Engineering, 86, 137-146. doi:10.1016/j.cie.2014.09.014 | es_ES |
dc.description.references | Wanke, P., Azad, M. D. A. K., & Barros, C. P. (2016). Predicting efficiency in Malaysian Islamic banks: A two-stage TOPSIS and neural networks approach. Research in International Business and Finance, 36, 485-498. doi:10.1016/j.ribaf.2015.10.002 | es_ES |
dc.description.references | Stojčić, M., Zavadskas, E., Pamučar, D., Stević, Ž., & Mardani, A. (2019). Application of MCDM Methods in Sustainability Engineering: A Literature Review 2008–2018. Symmetry, 11(3), 350. doi:10.3390/sym11030350 | es_ES |
dc.description.references | Xu, L., Shah, S. A. A., Zameer, H., & Solangi, Y. A. (2019). Evaluating renewable energy sources for implementing the hydrogen economy in Pakistan: a two-stage fuzzy MCDM approach. Environmental Science and Pollution Research, 26(32), 33202-33215. doi:10.1007/s11356-019-06431-0 | es_ES |
dc.description.references | Huang, I. B., Keisler, J., & Linkov, I. (2011). Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. Science of The Total Environment, 409(19), 3578-3594. doi:10.1016/j.scitotenv.2011.06.022 | es_ES |
dc.description.references | Pons, O., de la Fuente, A., & Aguado, A. (2016). The Use of MIVES as a Sustainability Assessment MCDM Method for Architecture and Civil Engineering Applications. Sustainability, 8(5), 460. doi:10.3390/su8050460 | es_ES |
dc.description.references | Shishegaran, A., Shishegaran, A., Mazzulla, G., & Forciniti, C. (2020). A Novel Approach for a Sustainability Evaluation of Developing System Interchange: The Case Study of the Sheikhfazolah-Yadegar Interchange, Tehran, Iran. International Journal of Environmental Research and Public Health, 17(2), 435. doi:10.3390/ijerph17020435 | es_ES |
dc.description.references | Wu, H.-Y., Chen, J.-K., Chen, I.-S., & Zhuo, H.-H. (2012). Ranking universities based on performance evaluation by a hybrid MCDM model. Measurement, 45(5), 856-880. doi:10.1016/j.measurement.2012.02.009 | es_ES |
dc.description.references | Shakouri G., H., & Tavassoli N., Y. (2012). Implementation of a hybrid fuzzy system as a decision support process: A FAHP–FMCDM–FIS composition. Expert Systems with Applications, 39(3), 3682-3691. doi:10.1016/j.eswa.2011.09.063 | es_ES |
dc.description.references | Mavi, R. K., Goh, M., & Mavi, N. K. (2016). Supplier Selection with Shannon Entropy and Fuzzy TOPSIS in the Context of Supply Chain Risk Management. Procedia - Social and Behavioral Sciences, 235, 216-225. doi:10.1016/j.sbspro.2016.11.017 | es_ES |
dc.description.references | Montgomery, B., Dragićević, S., Dujmović, J., & Schmidt, M. (2016). A GIS-based Logic Scoring of Preference method for evaluation of land capability and suitability for agriculture. Computers and Electronics in Agriculture, 124, 340-353. doi:10.1016/j.compag.2016.04.013 | es_ES |
dc.description.references | Debnath, A., Roy, J., Kar, S., Zavadskas, E., & Antucheviciene, J. (2017). A Hybrid MCDM Approach for Strategic Project Portfolio Selection of Agro By-Products. Sustainability, 9(8), 1302. doi:10.3390/su9081302 | es_ES |
dc.description.references | Seyedmohammadi, J., Sarmadian, F., Jafarzadeh, A. A., Ghorbani, M. A., & Shahbazi, F. (2018). Application of SAW, TOPSIS and fuzzy TOPSIS models in cultivation priority planning for maize, rapeseed and soybean crops. Geoderma, 310, 178-190. doi:10.1016/j.geoderma.2017.09.012 | es_ES |
dc.description.references | Rostamzadeh, R., Ghorabaee, M. K., Govindan, K., Esmaeili, A., & Nobar, H. B. K. (2018). Evaluation of sustainable supply chain risk management using an integrated fuzzy TOPSIS- CRITIC approach. Journal of Cleaner Production, 175, 651-669. doi:10.1016/j.jclepro.2017.12.071 | es_ES |
dc.description.references | Raut, R. D., Gardas, B. B., Kharat, M., & Narkhede, B. (2018). Modeling the drivers of post-harvest losses – MCDM approach. Computers and Electronics in Agriculture, 154, 426-433. doi:10.1016/j.compag.2018.09.035 | es_ES |
dc.description.references | Qureshi, M. R. N., Singh, R. K., & Hasan, M. A. (2017). Decision support model to select crop pattern for sustainable agricultural practices using fuzzy MCDM. Environment, Development and Sustainability, 20(2), 641-659. doi:10.1007/s10668-016-9903-7 | es_ES |
dc.description.references | Srinivasa Rao, C., Kareemulla, K., Krishnan, P., Murthy, G. R. K., Ramesh, P., Ananthan, P. S., & Joshi, P. K. (2019). Agro-ecosystem based sustainability indicators for climate resilient agriculture in India: A conceptual framework. Ecological Indicators, 105, 621-633. doi:10.1016/j.ecolind.2018.06.038 | es_ES |
dc.description.references | Paul, M., Negahban-Azar, M., Shirmohammadi, A., & Montas, H. (2020). Assessment of agricultural land suitability for irrigation with reclaimed water using geospatial multi-criteria decision analysis. Agricultural Water Management, 231, 105987. doi:10.1016/j.agwat.2019.105987 | es_ES |
dc.description.references | Balezentis, T., Chen, X., Galnaityte, A., & Namiotko, V. (2020). Optimizing crop mix with respect to economic and environmental constraints: An integrated MCDM approach. Science of The Total Environment, 705, 135896. doi:10.1016/j.scitotenv.2019.135896 | es_ES |
dc.description.references | Jahan, A., & Edwards, K. L. (2013). VIKOR method for material selection problems with interval numbers and target-based criteria. Materials & Design, 47, 759-765. doi:10.1016/j.matdes.2012.12.072 | es_ES |
dc.description.references | Pourhejazy, P., Kwon, O., Chang, Y.-T., & Park, H. (2017). Evaluating Resiliency of Supply Chain Network: A Data Envelopment Analysis Approach. Sustainability, 9(2), 255. doi:10.3390/su9020255 | es_ES |
dc.description.references | Stewart, T. J. (1996). Relationships between Data Envelopment Analysis and Multicriteria Decision Analysis. Journal of the Operational Research Society, 47(5), 654-665. doi:10.1057/jors.1996.77 | es_ES |
dc.description.references | Li, X.-B., & Reeves, G. R. (1999). A multiple criteria approach to data envelopment analysis. European Journal of Operational Research, 115(3), 507-517. doi:10.1016/s0377-2217(98)00130-1 | es_ES |
dc.description.references | Zavadskas, E. K., Turskis, Z., & Kildienė, S. (2014). STATE OF ART SURVEYS OF OVERVIEWS ON MCDM/MADM METHODS. Technological and Economic Development of Economy, 20(1), 165-179. doi:10.3846/20294913.2014.892037 | es_ES |
dc.description.references | Mousavi-Nasab, S. H., & Sotoudeh-Anvari, A. (2017). A comprehensive MCDM-based approach using TOPSIS, COPRAS and DEA as an auxiliary tool for material selection problems. Materials & Design, 121, 237-253. doi:10.1016/j.matdes.2017.02.041 | es_ES |
dc.description.references | Bouyssou, D. (1999). Using DEA as a tool for MCDM: some remarks. Journal of the Operational Research Society, 50(9), 974-978. doi:10.1057/palgrave.jors.2600800 | es_ES |
dc.description.references | Özcan, T., Çelebi, N., & Esnaf, Ş. (2011). Comparative analysis of multi-criteria decision making methodologies and implementation of a warehouse location selection problem. Expert Systems with Applications, 38(8), 9773-9779. doi:10.1016/j.eswa.2011.02.022 | es_ES |
dc.description.references | LOKEN, E. (2007). Use of multicriteria decision analysis methods for energy planning problems. Renewable and Sustainable Energy Reviews, 11(7), 1584-1595. doi:10.1016/j.rser.2005.11.005 | es_ES |
dc.description.references | Darji, V. P., & Rao, R. V. (2014). Intelligent Multi Criteria Decision Making Methods for Material Selection in Sugar Industry. Procedia Materials Science, 5, 2585-2594. doi:10.1016/j.mspro.2014.07.519 | es_ES |
dc.description.references | Ceballos, B., Lamata, M. T., & Pelta, D. A. (2016). A comparative analysis of multi-criteria decision-making methods. Progress in Artificial Intelligence, 5(4), 315-322. doi:10.1007/s13748-016-0093-1 | es_ES |
dc.description.references | Sen, B., Bhattacharjee, P., & Mandal, U. K. (2016). A comparative study of some prominent multi criteria decision making methods for connecting rod material selection. Perspectives in Science, 8, 547-549. doi:10.1016/j.pisc.2016.06.016 | es_ES |
dc.description.references | Wu, D. (2006). A note on DEA efficiency assessment using ideal point: An improvement of Wang and Luo’s model. Applied Mathematics and Computation, 183(2), 819-830. doi:10.1016/j.amc.2006.06.030 | es_ES |
dc.description.references | Kou, G., Peng, Y., & Wang, G. (2014). Evaluation of clustering algorithms for financial risk analysis using MCDM methods. Information Sciences, 275, 1-12. doi:10.1016/j.ins.2014.02.137 | es_ES |
dc.description.references | Roy, B. (1991). The outranking approach and the foundations of electre methods. Theory and Decision, 31(1), 49-73. doi:10.1007/bf00134132 | es_ES |
dc.description.references | YOON, K., & HWANG, C.-L. (1985). Manufacturing plant location analysis by multiple attribute decision making: part I—single-plant strategy. International Journal of Production Research, 23(2), 345-359. doi:10.1080/00207548508904712 | es_ES |
dc.description.references | Doyle, J., & Green, R. (1994). Efficiency and Cross-efficiency in DEA: Derivations, Meanings and Uses. Journal of the Operational Research Society, 45(5), 567-578. doi:10.1057/jors.1994.84 | es_ES |
dc.description.references | Martí, L., Martín, J. C., & Puertas, R. (2017). A Dea-Logistics Performance Index. Journal of Applied Economics, 20(1), 169-192. doi:10.1016/s1514-0326(17)30008-9 | es_ES |
dc.description.references | Canadá y la UE: Si Quierohttps://www.Euroganadería.eu | es_ES |
dc.description.references | KARABIYIK, C., & KUTLU KARABIYIK, B. (2018). Benchmarking International Trade Performance of OECD Countries: TOPSIS and AHP Approaches. Gaziantep University Journal of Social Sciences. doi:10.21547/jss.267381 | es_ES |
dc.description.references | Lin, M.-C., Wang, C.-C., Chen, M.-S., & Chang, C. A. (2008). Using AHP and TOPSIS approaches in customer-driven product design process. Computers in Industry, 59(1), 17-31. doi:10.1016/j.compind.2007.05.013 | es_ES |
dc.description.references | Lourenzutti, R., & Krohling, R. A. (2016). A generalized TOPSIS method for group decision making with heterogeneous information in a dynamic environment. Information Sciences, 330, 1-18. doi:10.1016/j.ins.2015.10.005 | es_ES |
dc.description.references | Roy, B. (1968). Classement et choix en présence de points de vue multiples. Revue française d’informatique et de recherche opérationnelle, 2(8), 57-75. doi:10.1051/ro/196802v100571 | es_ES |
dc.description.references | Jaini, N., & Utyuzhnikov, S. (2016). Trade-off ranking method for multi-criteria decision analysis. Journal of Multi-Criteria Decision Analysis, 24(3-4), e1600. doi:10.1002/mcda.1600 | es_ES |
dc.description.references | Farrell, M. J. (1957). The Measurement of Productive Efficiency. Journal of the Royal Statistical Society. Series A (General), 120(3), 253. doi:10.2307/2343100 | es_ES |
dc.description.references | Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444. doi:10.1016/0377-2217(78)90138-8 | es_ES |
dc.description.references | Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science, 30(9), 1078-1092. doi:10.1287/mnsc.30.9.1078 | es_ES |
dc.description.references | Angulo-Meza, L., & Lins, M. P. E. (2002). Annals of Operations Research, 116(1/4), 225-242. doi:10.1023/a:1021340616758 | es_ES |
dc.description.references | Falagario, M., Sciancalepore, F., Costantino, N., & Pietroforte, R. (2012). Using a DEA-cross efficiency approach in public procurement tenders. European Journal of Operational Research, 218(2), 523-529. doi:10.1016/j.ejor.2011.10.031 | es_ES |
dc.description.references | Puertas, R., & Marti, L. (2019). Sustainability in Universities: DEA-GreenMetric. Sustainability, 11(14), 3766. doi:10.3390/su11143766 | es_ES |