Mostrar el registro sencillo del ítem
dc.contributor.author | Burgos, C. | es_ES |
dc.contributor.author | Cortés, J.-C. | es_ES |
dc.contributor.author | Villafuerte, L. | es_ES |
dc.contributor.author | Villanueva Micó, Rafael Jacinto | es_ES |
dc.date.accessioned | 2021-02-19T04:33:26Z | |
dc.date.available | 2021-02-19T04:33:26Z | |
dc.date.issued | 2020-11 | es_ES |
dc.identifier.issn | 0377-0427 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161842 | |
dc.description.abstract | [EN] A fractional forward Euler-like method is developed to solve initial value problems with uncertainties formulated via the Caputo fractional derivative. The analysis is conducted by using the so-called random mean square calculus. Under mild conditions on the data, the mean square convergence of the numerical method is proved. This type of stochastic convergence guarantees the approximations of the mean and the variance of the solution stochastic process, computed via the aforementioned numerical scheme, will converge to their corresponding exact values. Furthermore, from this probability information, we calculate reliable approximations to the first probability density function of the solution by taking advantage of the Maximum Entropy Principle. The theoretical analysis is illustrated by two examples. | es_ES |
dc.description.sponsorship | This work has been partially supported by the Ministerio de Economia y Competitividad grant MTM2017-89664-P and by the European Union through the Operational Program of the European Regional Development Fund (ERDF)/European Social Fund (ESF) of the Valencian Community 20142020, grants GJIDI/2018/A/009 and GJIDI/2018/A/010. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Computational and Applied Mathematics | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Fractional differential equations with randomness | es_ES |
dc.subject | Random mean square calculus | es_ES |
dc.subject | Random mean square Caputo fractional derivative | es_ES |
dc.subject | Random numerics | es_ES |
dc.subject | Maximum Entropy Principle | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Mean square convergent numerical solutions of random fractional differential equations: Approximations of moments and density | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cam.2020.112925 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GJIDI%2F2018%2FA%2F009/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GJIDI%2F2018%2FA%2F010/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Burgos, C.; Cortés, J.; Villafuerte, L.; Villanueva Micó, RJ. (2020). Mean square convergent numerical solutions of random fractional differential equations: Approximations of moments and density. Journal of Computational and Applied Mathematics. 378:1-14. https://doi.org/10.1016/j.cam.2020.112925 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.cam.2020.112925 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 378 | es_ES |
dc.relation.pasarela | S\406996 | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Slama, H., El-Bedwhey, N. A., El-Depsy, A., & Selim, M. M. (2017). Solution of the finite Milne problem in stochastic media with RVT Technique. The European Physical Journal Plus, 132(12). doi:10.1140/epjp/i2017-11763-6 | es_ES |
dc.description.references | Golmankhaneh, A. K., Arefi, R., & Baleanu, D. (2013). Synchronization in a nonidentical fractional order of a proposed modified system. Journal of Vibration and Control, 21(6), 1154-1161. doi:10.1177/1077546313494953 | es_ES |
dc.description.references | Lupulescu, V., O’Regan, D., & ur Rahman, G. (2014). Existence results for random fractional differential equations. Opuscula Mathematica, 34(4), 813. doi:10.7494/opmath.2014.34.4.813 | es_ES |
dc.description.references | Acedo, L., Burgos, C., Cortés, J.-C., & Villanueva, R.-J. (2017). Probabilistic prediction of outbreaks of meningococcus W-135 infections over the next few years in Spain. Physica A: Statistical Mechanics and its Applications, 486, 106-117. doi:10.1016/j.physa.2017.05.043 | es_ES |
dc.description.references | Khan, Y., Wu, Q., Faraz, N., Yildirim, A., & Madani, M. (2012). A new fractional analytical approach via a modified Riemann–Liouville derivative. Applied Mathematics Letters, 25(10), 1340-1346. doi:10.1016/j.aml.2011.11.041 | es_ES |
dc.description.references | Khan, Y., Fardi, M., Sayevand, K., & Ghasemi, M. (2012). Solution of nonlinear fractional differential equations using an efficient approach. Neural Computing and Applications, 24(1), 187-192. doi:10.1007/s00521-012-1208-7 | es_ES |
dc.description.references | Burgos, C., Cortés, J.-C., Villafuerte, L., & Villanueva, R.-J. (2017). Extending the deterministic Riemann–Liouville and Caputo operators to the random framework: A mean square approach with applications to solve random fractional differential equations. Chaos, Solitons & Fractals, 102, 305-318. doi:10.1016/j.chaos.2017.02.008 | es_ES |
dc.description.references | Burgos, C., Cortés, J. ., Villafuerte, L., & Villanueva, R. J. (2017). Mean square calculus and random linear fractional differential equations: Theory and applications. Applied Mathematics and Nonlinear Sciences, 2(2), 317-328. doi:10.21042/amns.2017.2.00026 | es_ES |
dc.description.references | Khan, Y., Ali Beik, S. P., Sayevand, K., & Shayganmanesh, A. (2015). A numerical scheme for solving differential equations with space and time-fractional coordinate derivatives. Quaestiones Mathematicae, 38(1), 41-55. doi:10.2989/16073606.2014.981699 | es_ES |