- -

Mechanical Recycling of Partially Bio-Based and Recycled Polyethylene Terephthalate Blends by Reactive Extrusion with Poly(styrene-co-glycidyl methacrylate)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mechanical Recycling of Partially Bio-Based and Recycled Polyethylene Terephthalate Blends by Reactive Extrusion with Poly(styrene-co-glycidyl methacrylate)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Montava-Jorda, Sergi es_ES
dc.contributor.author Lascano-Aimacaña, Diego Sebastián es_ES
dc.contributor.author Quiles-Carrillo, Luis es_ES
dc.contributor.author Montanes, Nestor es_ES
dc.contributor.author Boronat, Teodomiro es_ES
dc.contributor.author Martínez Sanz, Antonio Vicente es_ES
dc.contributor.author Ferrándiz Bou, Santiago es_ES
dc.contributor.author Torres-Giner, Sergio es_ES
dc.date.accessioned 2021-02-19T04:33:29Z
dc.date.available 2021-02-19T04:33:29Z
dc.date.issued 2020-01-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161843
dc.description.abstract [EN] In the present study, partially bio-based polyethylene terephthalate (bio-PET) was melt-mixed at 15-45 wt% with recycled polyethylene terephthalate (r-PET) obtained from remnants of the injection blowing process of contaminant-free food-use bottles. The resultant compounded materials were thereafter shaped into pieces by injection molding for characterization. Poly(styrene-co-glycidyl methacrylate) (PS-co-GMA) was added at 1-5 parts per hundred resin (phr) of polyester blend during the extrusion process to counteract the ductility and toughness reduction that occurred in the bio-PET pieces after the incorporation of r-PET. This random copolymer effectively acted as a chain extender in the polyester blend, resulting in injection-molded pieces with slightly higher mechanical resistance properties and nearly the same ductility and toughness than those of neat bio-PET. In particular, for the polyester blend containing 45 wt% of r-PET, elongation at break (epsilon(b)) increased from 10.8% to 378.8% after the addition of 5 phr of PS-co-GMA, while impact strength also improved from 1.84 kJm(-2) to 2.52 kJm(-2). The mechanical enhancement attained was related to the formation of branched and larger macromolecules by a mechanism of chain extension based on the reaction of the multiple glycidyl methacrylate (GMA) groups present in PS-co-GMA with the hydroxyl (-OH) and carboxyl (-COOH) terminal groups of both bio-PET and r-PET. Furthermore, all the polyester blend pieces showed thermal and dimensional stabilities similar to those of neat bio-PET, remaining stable up to more than 400 degrees C. Therefore, the use low contents of the tested multi-functional copolymer can successfully restore the properties of bio-based but non-biodegradable polyesters during melt reprocessing with their recycled petrochemical counterparts and an effective mechanical recycling is achieved. es_ES
dc.description.sponsorship This research work was funded by the Spanish Ministry of Science, Innovation, and Universities (MICIU) project numbers RTI2018-097249-B-C21 and MAT2017-84909-C2-2-R es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Polymers es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Bio-PET es_ES
dc.subject R-PET es_ES
dc.subject Chain extenders es_ES
dc.subject Reactive extrusion es_ES
dc.subject Secondary recycling es_ES
dc.subject Food packaging es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Mechanical Recycling of Partially Bio-Based and Recycled Polyethylene Terephthalate Blends by Reactive Extrusion with Poly(styrene-co-glycidyl methacrylate) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/polym12010174 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097249-B-C21/ES/ENVASE ACTIVO MULTICAPA TERMOCONFORMABLE DE ALTA BARRERA BASADO EN BIOECONOMIA CIRCULAR/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.description.bibliographicCitation Montava-Jorda, S.; Lascano-Aimacaña, DS.; Quiles-Carrillo, L.; Montanes, N.; Boronat, T.; Martínez Sanz, AV.; Ferrándiz Bou, S.... (2020). Mechanical Recycling of Partially Bio-Based and Recycled Polyethylene Terephthalate Blends by Reactive Extrusion with Poly(styrene-co-glycidyl methacrylate). Polymers. 12(1):1-20. https://doi.org/10.3390/polym12010174 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/polym12010174 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2073-4360 es_ES
dc.identifier.pmid 31936575 es_ES
dc.identifier.pmcid PMC7023399 es_ES
dc.relation.pasarela S\400487 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Payne, J., McKeown, P., & Jones, M. D. (2019). A circular economy approach to plastic waste. Polymer Degradation and Stability, 165, 170-181. doi:10.1016/j.polymdegradstab.2019.05.014 es_ES
dc.description.references Niaounakis, M. (2019). Recycling of biopolymers – The patent perspective. European Polymer Journal, 114, 464-475. doi:10.1016/j.eurpolymj.2019.02.027 es_ES
dc.description.references Tavares, A. A., Silva, D. F. A., Lima, P. S., Andrade, D. L. A. C. S., Silva, S. M. L., & Canedo, E. L. (2016). Chain extension of virgin and recycled polyethylene terephthalate. Polymer Testing, 50, 26-32. doi:10.1016/j.polymertesting.2015.11.020 es_ES
dc.description.references Recycling Polyethylene Terephthalatehttps://www.thebalancesmb.com/recycling-polyethylene-terephthalate-pet-2877869 es_ES
dc.description.references Coca-Cola Switches to Recycled Plastic for PET Bottles in Swedenhttps://www.reuters.com/article/us-coca-cola-plastic/coca-cola-switches-to-recycled-plastic-for-pet-bottles-in-sweden-idUSKBN1XT1QS es_ES
dc.description.references European Bioplasticshttps://www.european-bioplastics.org/ es_ES
dc.description.references Park, S. H., & Kim, S. H. (2014). Poly (ethylene terephthalate) recycling for high value added textiles. Fashion and Textiles, 1(1). doi:10.1186/s40691-014-0001-x es_ES
dc.description.references Okuwaki, A. (2004). Feedstock recycling of plastics in Japan. Polymer Degradation and Stability, 85(3), 981-988. doi:10.1016/j.polymdegradstab.2004.01.023 es_ES
dc.description.references Patel, M., von Thienen, N., Jochem, E., & Worrell, E. (2000). Recycling of plastics in Germany. Resources, Conservation and Recycling, 29(1-2), 65-90. doi:10.1016/s0921-3449(99)00058-0 es_ES
dc.description.references Dullius, J., Ruecker, C., Oliveira, V., Ligabue, R., & Einloft, S. (2006). Chemical recycling of post-consumer PET: Alkyd resins synthesis. Progress in Organic Coatings, 57(2), 123-127. doi:10.1016/j.porgcoat.2006.07.004 es_ES
dc.description.references Shukla, S. R., Harad, A. M., & Jawale, L. S. (2008). Recycling of waste PET into useful textile auxiliaries. Waste Management, 28(1), 51-56. doi:10.1016/j.wasman.2006.11.002 es_ES
dc.description.references Sogancioglu, M., Yucel, A., Yel, E., & Ahmetli, G. (2017). Production of Epoxy Composite from the Pyrolysis Char of Washed PET Wastes. Energy Procedia, 118, 216-220. doi:10.1016/j.egypro.2017.07.022 es_ES
dc.description.references Lee, J. H., Lim, K. S., Hahm, W. G., & Kim, S. H. (2012). Properties of recycled and virgin poly(ethylene terephthalate) blend fibers. Journal of Applied Polymer Science, 128(2), 1250-1256. doi:10.1002/app.38502 es_ES
dc.description.references Srithep, Y., Javadi, A., Pilla, S., Turng, L.-S., Gong, S., Clemons, C., & Peng, J. (2011). Processing and characterization of recycled poly(ethylene terephthalate) blends with chain extenders, thermoplastic elastomer, and/or poly(butylene adipate-co -terephthalate). Polymer Engineering & Science, 51(6), 1023-1032. doi:10.1002/pen.21916 es_ES
dc.description.references Garforth, A. A., Ali, S., Hernández-Martínez, J., & Akah, A. (2004). Feedstock recycling of polymer wastes. Current Opinion in Solid State and Materials Science, 8(6), 419-425. doi:10.1016/j.cossms.2005.04.003 es_ES
dc.description.references Pawlak, A., Pluta, M., Morawiec, J., Galeski, A., & Pracella, M. (2000). Characterization of scrap poly(ethylene terephthalate). European Polymer Journal, 36(9), 1875-1884. doi:10.1016/s0014-3057(99)00261-x es_ES
dc.description.references Pirzadeh, E., Zadhoush, A., & Haghighat, M. (2007). Hydrolytic and thermal degradation of PET fibers and PET granule: The effects of crystallization, temperature, and humidity. Journal of Applied Polymer Science, 106(3), 1544-1549. doi:10.1002/app.26788 es_ES
dc.description.references Elamri, A., Lallam, A., Harzallah, O., & Bencheikh, L. (2007). Mechanical characterization of melt spun fibers from recycled and virgin PET blends. Journal of Materials Science, 42(19), 8271-8278. doi:10.1007/s10853-007-1590-1 es_ES
dc.description.references Scaffaro, R., & La Mantia, F. P. (2002). Characterization of monopolymer blend of virgin and recycled polyamide 6. Polymer Engineering & Science, 42(12), 2412-2417. doi:10.1002/pen.11127 es_ES
dc.description.references Coltelli, M.-B., Savi, S., Della Maggiore, I., Liuzzo, V., Aglietto, M., & Ciardelli, F. (2004). A Model Study of Ti(OBu)4 Catalyzed Reactions during Reactive Blending of Polyethylene(PE) and Poly(ethylene terephthalate)(PET). Macromolecular Materials and Engineering, 289(5), 400-412. doi:10.1002/mame.200300297 es_ES
dc.description.references Duarte, I. S., Tavares, A. A., Lima, P. S., Andrade, D. L. A. C. S., Carvalho, L. H., Canedo, E. L., & Silva, S. M. L. (2016). Chain extension of virgin and recycled poly(ethylene terephthalate): Effect of processing conditions and reprocessing. Polymer Degradation and Stability, 124, 26-34. doi:10.1016/j.polymdegradstab.2015.11.021 es_ES
dc.description.references Li, J., Tang, S., Wu, Z., Zheng, A., Guan, Y., & Wei, D. (2017). Branching and cross-linking of poly(ethylene terephthalate) and its foaming properties. Polymer Science, Series B, 59(2), 164-172. doi:10.1134/s1560090417020051 es_ES
dc.description.references Torres, N., Robin, J. J., & Boutevin, B. (2000). Study of thermal and mechanical properties of virgin and recycled poly(ethylene terephthalate) before and after injection molding. European Polymer Journal, 36(10), 2075-2080. doi:10.1016/s0014-3057(99)00301-8 es_ES
dc.description.references Awaja, F., Daver, F., & Kosior, E. (2004). Recycled poly(ethylene terephthalate) chain extension by a reactive extrusion process. Polymer Engineering and Science, 44(8), 1579-1587. doi:10.1002/pen.20155 es_ES
dc.description.references Incarnato, L., Scarfato, P., Di Maio, L., & Acierno, D. (2000). Structure and rheology of recycled PET modified by reactive extrusion. Polymer, 41(18), 6825-6831. doi:10.1016/s0032-3861(00)00032-x es_ES
dc.description.references Jacques, B., Devaux, J., Legras, R., & Nield, E. (1996). Reactions induced by triphenyl phosphite addition during melt mixing of poly(ethylene terephthalate)/poly(butylene terephthalate) blends: influence on polyester molecular structure and thermal behaviour. Polymer, 37(7), 1189-1200. doi:10.1016/0032-3861(96)80846-9 es_ES
dc.description.references Cavalcanti, F. N., Teófilo, E. T., Rabello, M. S., & Silva, S. M. L. (2007). Chain extension and degradation during reactive processing of PET in the presence of triphenyl phosphite. Polymer Engineering & Science, 47(12), 2155-2163. doi:10.1002/pen.20912 es_ES
dc.description.references Torres, N., Robin, J. J., & Boutevin, B. (2001). Chemical modification of virgin and recycled poly(ethylene terephthalate) by adding of chain extenders during processing. Journal of Applied Polymer Science, 79(10), 1816-1824. doi:10.1002/1097-4628(20010307)79:10<1816::aid-app100>3.0.co;2-r es_ES
dc.description.references Nascimento, C. R., Azuma, C., Bretas, R., Farah, M., & Dias, M. L. (2010). Chain extension reaction in solid-state polymerization of recycled PET: The influence of 2,2â ²-bis-2-oxazoline and pyromellitic anhydride. Journal of Applied Polymer Science, 115(6), 3177-3188. doi:10.1002/app.31400 es_ES
dc.description.references Karayannidis, G. P., & Psalida, E. A. (2000). Chain extension of recycled poly(ethylene terephthalate) with 2,2?-(1,4-phenylene)bis(2-oxazoline). Journal of Applied Polymer Science, 77(10), 2206-2211. doi:10.1002/1097-4628(20000906)77:10<2206::aid-app14>3.0.co;2-d es_ES
dc.description.references Xu, X., Ding, Y., Qian, Z., Wang, F., Wen, B., Zhou, H., … Yang, M. (2009). Degradation of poly(ethylene terephthalate)/clay nanocomposites during melt extrusion: Effect of clay catalysis and chain extension. Polymer Degradation and Stability, 94(1), 113-123. doi:10.1016/j.polymdegradstab.2008.09.009 es_ES
dc.description.references Haralabakopoulos, A. A., Tsiourvas, D., & Paleos, C. M. (1999). Chain extension of poly(ethylene terephthalate) by reactive blending using diepoxides. Journal of Applied Polymer Science, 71(13), 2121-2127. doi:10.1002/(sici)1097-4628(19990328)71:13<2121::aid-app1>3.0.co;2-y es_ES
dc.description.references Makkam, S., & Harnnarongchai, W. (2014). Rheological and Mechanical Properties of Recycled PET Modified by Reactive Extrusion. Energy Procedia, 56, 547-553. doi:10.1016/j.egypro.2014.07.191 es_ES
dc.description.references Zhang, Y., Guo, W., Zhang, H., & Wu, C. (2009). Influence of chain extension on the compatibilization and properties of recycled poly(ethylene terephthalate)/linear low density polyethylene blends. Polymer Degradation and Stability, 94(7), 1135-1141. doi:10.1016/j.polymdegradstab.2009.03.010 es_ES
dc.description.references Huang, J.-M. (2003). Polymer blends of poly(trimethylene terephthalate) and polystyrene compatibilized by styrene-glycidyl methacrylate copolymers. Journal of Applied Polymer Science, 88(9), 2247-2252. doi:10.1002/app.11945 es_ES
dc.description.references Pracella, M., Chionna, D., Pawlak, A., & Galeski, A. (2005). Reactive mixing of PET and PET/PP blends with glycidyl methacrylate-modified styrene-b-(ethylene-co-olefin) block copolymers. Journal of Applied Polymer Science, 98(5), 2201-2211. doi:10.1002/app.22413 es_ES
dc.description.references Benvenuta Tapia, J. J., Tenorio-López, J. A., Martínez-Estrada, A., & Guerrero-Sánchez, C. (2019). Application of RAFT-synthesized reactive tri-block copolymers for the recycling of post-consumer R-PET by melt processing. Materials Chemistry and Physics, 229, 474-481. doi:10.1016/j.matchemphys.2019.02.074 es_ES
dc.description.references Al-Sabagh, A. M., Yehia, F. Z., Eshaq, G., Rabie, A. M., & ElMetwally, A. E. (2016). Greener routes for recycling of polyethylene terephthalate. Egyptian Journal of Petroleum, 25(1), 53-64. doi:10.1016/j.ejpe.2015.03.001 es_ES
dc.description.references Montava-Jordà, S., Torres-Giner, S., Ferrandiz-Bou, S., Quiles-Carrillo, L., & Montanes, N. (2019). Development of Sustainable and Cost-Competitive Injection-Molded Pieces of Partially Bio-Based Polyethylene Terephthalate through the Valorization of Cotton Textile Waste. International Journal of Molecular Sciences, 20(6), 1378. doi:10.3390/ijms20061378 es_ES
dc.description.references Agüero, A., Morcillo, M. del C., Quiles-Carrillo, L., Balart, R., Boronat, T., Lascano, D., … Fenollar, O. (2019). Study of the Influence of the Reprocessing Cycles on the Final Properties of Polylactide Pieces Obtained by Injection Molding. Polymers, 11(12), 1908. doi:10.3390/polym11121908 es_ES
dc.description.references Negoro, T., Thodsaratpreeyakul, W., Takada, Y., Thumsorn, S., Inoya, H., & Hamada, H. (2016). Role of Crystallinity on Moisture Absorption and Mechanical Performance of Recycled PET Compounds. Energy Procedia, 89, 323-327. doi:10.1016/j.egypro.2016.05.042 es_ES
dc.description.references Badía, J. D., Vilaplana, F., Karlsson, S., & Ribes-Greus, A. (2009). Thermal analysis as a quality tool for assessing the influence of thermo-mechanical degradation on recycled poly(ethylene terephthalate). Polymer Testing, 28(2), 169-175. doi:10.1016/j.polymertesting.2008.11.010 es_ES
dc.description.references Jabarin, S. A., & Lofgren, E. A. (1986). Effects of water absorption on physical properties and degree of molecular orientation of poly (ethylene terephthalate). Polymer Engineering and Science, 26(9), 620-625. doi:10.1002/pen.760260907 es_ES
dc.description.references Mancini, S. D., & Zanin, M. (2000). Consecutive steps of PET recycling by injection: evaluation of the procedure and of the mechanical properties. Journal of Applied Polymer Science, 76(2), 266-275. doi:10.1002/(sici)1097-4628(20000411)76:2<266::aid-app16>3.0.co;2-q es_ES
dc.description.references Oromiehie, A., & Mamizadeh, A. (2004). Recycling PET beverage bottles and improving properties. Polymer International, 53(6), 728-732. doi:10.1002/pi.1389 es_ES
dc.description.references Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017 es_ES
dc.description.references Badia, J. D., Strömberg, E., Karlsson, S., & Ribes-Greus, A. (2012). The role of crystalline, mobile amorphous and rigid amorphous fractions in the performance of recycled poly (ethylene terephthalate) (PET). Polymer Degradation and Stability, 97(1), 98-107. doi:10.1016/j.polymdegradstab.2011.10.008 es_ES
dc.description.references Vilaplana, F., Karlsson, S., & Ribes-Greus, A. (2007). Changes in the microstructure and morphology of high-impact polystyrene subjected to multiple processing and thermo-oxidative degradation. European Polymer Journal, 43(10), 4371-4381. doi:10.1016/j.eurpolymj.2007.07.017 es_ES
dc.description.references Strömberg, E., & Karlsson, S. (2009). The design of a test protocol to model the degradation of polyolefins during recycling and service life. Journal of Applied Polymer Science, 112(3), 1835-1844. doi:10.1002/app.29724 es_ES
dc.description.references Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031 es_ES
dc.description.references Medellin-Rodriguez, F. J., Phillips, P. J., Lin, J. S., & Campos, R. (1997). The triple melting behavior of poly(ethylene terephthalate): Molecular weight effects. Journal of Polymer Science Part B: Polymer Physics, 35(11), 1757-1774. doi:10.1002/(sici)1099-0488(199708)35:11<1757::aid-polb9>3.0.co;2-p es_ES
dc.description.references Awaja, F., Daver, F., Kosior, E., & Cser, F. (2004). The effect of chain extension on the thermal behaviour and crystallinity of reactive extruded recycled PET. Journal of Thermal Analysis and Calorimetry, 78(3), 865-884. doi:10.1007/s10973-005-0454-0 es_ES
dc.description.references Spinac�, M. A. S., & De Paoli, M. A. (2001). Characterization of poly(ethylene terephtalate) after multiple processing cycles. Journal of Applied Polymer Science, 80(1), 20-25. doi:10.1002/1097-4628(20010404)80:1<20::aid-app1069>3.0.co;2-s es_ES
dc.description.references Inata, H., & Matsumura, S. (1987). Chain extenders for polyesters. IV. Properties of the polyesters chain-extended by 2,2′-bis(2-oxazoline). Journal of Applied Polymer Science, 33(8), 3069-3079. doi:10.1002/app.1987.070330838 es_ES
dc.description.references Kiliaris, P., Papaspyrides, C. D., & Pfaendner, R. (2007). Reactive-extrusion route for the closed-loop recycling of poly(ethylene terephthalate). Journal of Applied Polymer Science, 104(3), 1671-1678. doi:10.1002/app.25795 es_ES
dc.description.references Vannier, A., Duquesne, S., Bourbigot, S., Castrovinci, A., Camino, G., & Delobel, R. (2008). The use of POSS as synergist in intumescent recycled poly(ethylene terephthalate). Polymer Degradation and Stability, 93(4), 818-826. doi:10.1016/j.polymdegradstab.2008.01.016 es_ES
dc.description.references Levchik, S. V., & Weil, E. D. (2004). A review on thermal decomposition and combustion of thermoplastic polyesters. Polymers for Advanced Technologies, 15(12), 691-700. doi:10.1002/pat.526 es_ES
dc.description.references Dzi??cio?, M., & Trzeszczy?ski, J. (2001). Temperature and atmosphere influences on smoke composition during thermal degradation of poly(ethylene terephthalate). Journal of Applied Polymer Science, 81(12), 3064-3068. doi:10.1002/app.1757 es_ES
dc.description.references Dzie�cio?, M., & Trzeszczyn�ski, J. (1998). Studies of temperature influence on volatile thermal degradation products of poly(ethylene terephthalate). Journal of Applied Polymer Science, 69(12), 2377-2381. doi:10.1002/(sici)1097-4628(19980919)69:12<2377::aid-app9>3.0.co;2-5 es_ES
dc.description.references Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem