- -

Density function of random differential equations via finite difference schemes: a theoretical analysis of a random diffusion-reaction Poisson-type problem

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Density function of random differential equations via finite difference schemes: a theoretical analysis of a random diffusion-reaction Poisson-type problem

Mostrar el registro completo del ítem

Calatayud, J.; Cortés, J.; Díaz, J.; Jornet, M. (2020). Density function of random differential equations via finite difference schemes: a theoretical analysis of a random diffusion-reaction Poisson-type problem. Stochastics: An International Journal of Probability and Stochastic Processes (Online). 92(4):627-641. https://doi.org/10.1080/17442508.2019.1645849

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161848

Ficheros en el ítem

Metadatos del ítem

Título: Density function of random differential equations via finite difference schemes: a theoretical analysis of a random diffusion-reaction Poisson-type problem
Autor: Calatayud, J. Cortés, J.-C. Díaz, J.A. Jornet, M.
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] A computational approach to approximate the probability density function of random differential equations is based on transformation of random variables and finite difference schemes. The theoretical analysis of this ...[+]
Palabras clave: Random diffusion-reaction Poisson-type problem , Finite difference scheme , Probability density function , Numerical methods
Derechos de uso: Reserva de todos los derechos
Fuente:
Stochastics: An International Journal of Probability and Stochastic Processes (Online). (eissn: 1744-2516 )
DOI: 10.1080/17442508.2019.1645849
Editorial:
Taylor & Francis
Versión del editor: https://doi.org/10.1080/17442508.2019.1645849
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/
Agradecimientos:
This work has been supported by the Spanish Ministerio de Economia y Competitividad grant MTM2017-89664-P. Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y Desarrollo ...[+]
Tipo: Artículo

References

Berman, A., & Plemmons, R. J. (1994). Nonnegative Matrices in the Mathematical Sciences. doi:10.1137/1.9781611971262

Brezis, H. (2011). Functional Analysis, Sobolev Spaces and Partial Differential Equations. doi:10.1007/978-0-387-70914-7

Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160-173. doi:10.1016/j.cnsns.2015.09.009 [+]
Berman, A., & Plemmons, R. J. (1994). Nonnegative Matrices in the Mathematical Sciences. doi:10.1137/1.9781611971262

Brezis, H. (2011). Functional Analysis, Sobolev Spaces and Partial Differential Equations. doi:10.1007/978-0-387-70914-7

Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160-173. doi:10.1016/j.cnsns.2015.09.009

Hussein, A., & Selim, M. M. (2012). Solution of the stochastic radiative transfer equation with Rayleigh scattering using RVT technique. Applied Mathematics and Computation, 218(13), 7193-7203. doi:10.1016/j.amc.2011.12.088

Jost, J. (2007). Partial Differential Equations. Graduate Texts in Mathematics. doi:10.1007/978-0-387-49319-0

Kallianpur, G. (1980). Stochastic Filtering Theory. Stochastic Modelling and Applied Probability. doi:10.1007/978-1-4757-6592-2

Lord, G. J., Powell, C. E., & Shardlow, T. (2009). An Introduction to Computational Stochastic PDEs. doi:10.1017/cbo9781139017329

Strand, J. . (1970). Random ordinary differential equations. Journal of Differential Equations, 7(3), 538-553. doi:10.1016/0022-0396(70)90100-2

Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061

Williams, D. (1991). Probability with Martingales. doi:10.1017/cbo9780511813658

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem